Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from bs4 import BeautifulSoup
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import folium
|
| 5 |
+
from folium.plugins import MarkerCluster, HeatMap
|
| 6 |
+
import plotly.graph_objects as go
|
| 7 |
+
from geopy.geocoders import Nominatim
|
| 8 |
+
import re
|
| 9 |
+
import streamlit as st
|
| 10 |
+
|
| 11 |
+
# Streamlit title and description
|
| 12 |
+
st.title("Restaurant Data Extractor")
|
| 13 |
+
st.write("Extracting restaurant data and displaying it on a map.")
|
| 14 |
+
|
| 15 |
+
# Read data from Google Sheets
|
| 16 |
+
sheet_id = "1xUfnD1WCF5ldqECI8YXIko1gCpaDDCwTztL17kjI42U"
|
| 17 |
+
df1 = pd.read_csv(f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv")
|
| 18 |
+
|
| 19 |
+
# Convert "網址" column to a Python list
|
| 20 |
+
urls = df1["網址"].tolist()
|
| 21 |
+
|
| 22 |
+
# Create a DataFrame to store all restaurant data
|
| 23 |
+
df = pd.DataFrame(columns=["Store Name", "Address", "Latitude", "Longitude", "Region"])
|
| 24 |
+
|
| 25 |
+
# Initialize Nominatim geocoder
|
| 26 |
+
geolocator = Nominatim(user_agent="my_app")
|
| 27 |
+
|
| 28 |
+
# Function to extract region (區域) from the address using regex
|
| 29 |
+
def extract_region(address):
|
| 30 |
+
match = re.search(r'(.*?)區|縣|市', address)
|
| 31 |
+
if match:
|
| 32 |
+
return match.group(0)
|
| 33 |
+
else:
|
| 34 |
+
return "Unknown"
|
| 35 |
+
|
| 36 |
+
# Progress bar in Streamlit
|
| 37 |
+
progress_bar = st.progress(0)
|
| 38 |
+
total_urls = len(urls)
|
| 39 |
+
|
| 40 |
+
# Iterate through each URL
|
| 41 |
+
for idx, url in enumerate(urls):
|
| 42 |
+
response = requests.get(url)
|
| 43 |
+
soup = BeautifulSoup(response.content, "html.parser")
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
store_name = soup.find("h2", class_="restaurant-details__heading--title").text.strip()
|
| 47 |
+
except AttributeError:
|
| 48 |
+
store_name = None
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
address = soup.find("li", class_="restaurant-details__heading--address").text.strip()
|
| 52 |
+
region = extract_region(address)
|
| 53 |
+
except AttributeError:
|
| 54 |
+
address = None
|
| 55 |
+
region = "Unknown"
|
| 56 |
+
|
| 57 |
+
try:
|
| 58 |
+
location = geolocator.geocode(address)
|
| 59 |
+
if location:
|
| 60 |
+
latitude = location.latitude
|
| 61 |
+
longitude = location.longitude
|
| 62 |
+
else:
|
| 63 |
+
latitude = None
|
| 64 |
+
longitude = None
|
| 65 |
+
except:
|
| 66 |
+
latitude = None
|
| 67 |
+
longitude = None
|
| 68 |
+
|
| 69 |
+
new_row = pd.DataFrame({
|
| 70 |
+
"Store Name": [store_name],
|
| 71 |
+
"Address": [address],
|
| 72 |
+
"Latitude": [latitude],
|
| 73 |
+
"Longitude": [longitude],
|
| 74 |
+
"Region": [region]
|
| 75 |
+
})
|
| 76 |
+
|
| 77 |
+
df = pd.concat([df, new_row], ignore_index=True)
|
| 78 |
+
|
| 79 |
+
# Update progress bar
|
| 80 |
+
progress_bar.progress((idx + 1) / total_urls)
|
| 81 |
+
|
| 82 |
+
# Save the DataFrame to CSV with UTF-8 encoding
|
| 83 |
+
csv_file = "restaurants_data.csv"
|
| 84 |
+
df.to_csv(csv_file, encoding="utf-8-sig", index=False)
|
| 85 |
+
|
| 86 |
+
# Display a download button for the CSV file
|
| 87 |
+
st.write(f"Data saved to {csv_file}")
|
| 88 |
+
st.download_button(
|
| 89 |
+
label="Download restaurant data as CSV",
|
| 90 |
+
data=open(csv_file, "rb").read(),
|
| 91 |
+
file_name=csv_file,
|
| 92 |
+
mime="text/csv"
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# Display a map using Folium in Streamlit
|
| 96 |
+
st.subheader("Restaurant Locations Map")
|
| 97 |
+
|
| 98 |
+
# Create map centered around Tainan
|
| 99 |
+
m = folium.Map(location=[23.0, 120.2], zoom_start=12)
|
| 100 |
+
|
| 101 |
+
# Add marker cluster to the map
|
| 102 |
+
marker_cluster = MarkerCluster().add_to(m)
|
| 103 |
+
for index, row in df.iterrows():
|
| 104 |
+
if pd.notnull(row["Latitude"]) and pd.notnull(row["Longitude"]):
|
| 105 |
+
folium.Marker(
|
| 106 |
+
location=[row["Latitude"], row["Longitude"]],
|
| 107 |
+
popup=row["Store Name"],
|
| 108 |
+
tooltip=row["Address"]
|
| 109 |
+
).add_to(marker_cluster)
|
| 110 |
+
|
| 111 |
+
# Display the map in Streamlit
|
| 112 |
+
st.components.v1.html(m._repr_html_(), height=600)
|
| 113 |
+
|
| 114 |
+
# Optional: Display the DataFrame as a table
|
| 115 |
+
st.subheader("Restaurant Data")
|
| 116 |
+
st.dataframe(df)
|