Upload local_utils.py
Browse files- local_utils.py +221 -0
local_utils.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pylint: disable=invalid-name, redefined-outer-name, missing-docstring, non-parent-init-called, trailing-whitespace, line-too-long
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
from tensorflow.python.keras.backend import set_session
|
6 |
+
|
7 |
+
|
8 |
+
class Label:
|
9 |
+
def __init__(self, cl=-1, tl=np.array([0., 0.]), br=np.array([0., 0.]), prob=None):
|
10 |
+
self.__tl = tl
|
11 |
+
self.__br = br
|
12 |
+
self.__cl = cl
|
13 |
+
self.__prob = prob
|
14 |
+
|
15 |
+
def __str__(self):
|
16 |
+
return 'Class: %d, top left(x: %f, y: %f), bottom right(x: %f, y: %f)' % (
|
17 |
+
self.__cl, self.__tl[0], self.__tl[1], self.__br[0], self.__br[1])
|
18 |
+
|
19 |
+
def copy(self):
|
20 |
+
return Label(self.__cl, self.__tl, self.__br)
|
21 |
+
|
22 |
+
def wh(self): return self.__br - self.__tl
|
23 |
+
|
24 |
+
def cc(self): return self.__tl + self.wh() / 2
|
25 |
+
|
26 |
+
def tl(self): return self.__tl
|
27 |
+
|
28 |
+
def br(self): return self.__br
|
29 |
+
|
30 |
+
def tr(self): return np.array([self.__br[0], self.__tl[1]])
|
31 |
+
|
32 |
+
def bl(self): return np.array([self.__tl[0], self.__br[1]])
|
33 |
+
|
34 |
+
def cl(self): return self.__cl
|
35 |
+
|
36 |
+
def area(self): return np.prod(self.wh())
|
37 |
+
|
38 |
+
def prob(self): return self.__prob
|
39 |
+
|
40 |
+
def set_class(self, cl):
|
41 |
+
self.__cl = cl
|
42 |
+
|
43 |
+
def set_tl(self, tl):
|
44 |
+
self.__tl = tl
|
45 |
+
|
46 |
+
def set_br(self, br):
|
47 |
+
self.__br = br
|
48 |
+
|
49 |
+
def set_wh(self, wh):
|
50 |
+
cc = self.cc()
|
51 |
+
self.__tl = cc - .5 * wh
|
52 |
+
self.__br = cc + .5 * wh
|
53 |
+
|
54 |
+
def set_prob(self, prob):
|
55 |
+
self.__prob = prob
|
56 |
+
|
57 |
+
|
58 |
+
class DLabel(Label):
|
59 |
+
def __init__(self, cl, pts, prob):
|
60 |
+
self.pts = pts
|
61 |
+
tl = np.amin(pts, axis=1)
|
62 |
+
br = np.amax(pts, axis=1)
|
63 |
+
Label.__init__(self, cl, tl, br, prob)
|
64 |
+
|
65 |
+
|
66 |
+
def getWH(shape):
|
67 |
+
return np.array(shape[1::-1]).astype(float)
|
68 |
+
|
69 |
+
|
70 |
+
def IOU(tl1, br1, tl2, br2):
|
71 |
+
wh1, wh2 = br1 - tl1, br2 - tl2
|
72 |
+
assert ((wh1 >= 0).all() and (wh2 >= 0).all())
|
73 |
+
|
74 |
+
intersection_wh = np.maximum(np.minimum(br1, br2) - np.maximum(tl1, tl2), 0)
|
75 |
+
intersection_area = np.prod(intersection_wh)
|
76 |
+
area1, area2 = (np.prod(wh1), np.prod(wh2))
|
77 |
+
union_area = area1 + area2 - intersection_area
|
78 |
+
return intersection_area / union_area
|
79 |
+
|
80 |
+
|
81 |
+
def IOU_labels(l1, l2):
|
82 |
+
return IOU(l1.tl(), l1.br(), l2.tl(), l2.br())
|
83 |
+
|
84 |
+
|
85 |
+
def nms(Labels, iou_threshold=0.5):
|
86 |
+
SelectedLabels = []
|
87 |
+
Labels.sort(key=lambda l: l.prob(), reverse=True)
|
88 |
+
|
89 |
+
for label in Labels:
|
90 |
+
non_overlap = True
|
91 |
+
for sel_label in SelectedLabels:
|
92 |
+
if IOU_labels(label, sel_label) > iou_threshold:
|
93 |
+
non_overlap = False
|
94 |
+
break
|
95 |
+
|
96 |
+
if non_overlap:
|
97 |
+
SelectedLabels.append(label)
|
98 |
+
return SelectedLabels
|
99 |
+
|
100 |
+
|
101 |
+
def find_T_matrix(pts, t_pts):
|
102 |
+
A = np.zeros((8, 9))
|
103 |
+
for i in range(0, 4):
|
104 |
+
xi = pts[:, i]
|
105 |
+
xil = t_pts[:, i]
|
106 |
+
xi = xi.T
|
107 |
+
|
108 |
+
A[i * 2, 3:6] = -xil[2] * xi
|
109 |
+
A[i * 2, 6:] = xil[1] * xi
|
110 |
+
A[i * 2 + 1, :3] = xil[2] * xi
|
111 |
+
A[i * 2 + 1, 6:] = -xil[0] * xi
|
112 |
+
|
113 |
+
[U, S, V] = np.linalg.svd(A)
|
114 |
+
H = V[-1, :].reshape((3, 3))
|
115 |
+
return H
|
116 |
+
|
117 |
+
|
118 |
+
def getRectPts(tlx, tly, brx, bry):
|
119 |
+
return np.matrix([[tlx, brx, brx, tlx], [tly, tly, bry, bry], [1, 1, 1, 1]], dtype=float)
|
120 |
+
|
121 |
+
|
122 |
+
def normal(pts, side, mn, MN):
|
123 |
+
pts_MN_center_mn = pts * side
|
124 |
+
pts_MN = pts_MN_center_mn + mn.reshape((2, 1))
|
125 |
+
pts_prop = pts_MN / MN.reshape((2, 1))
|
126 |
+
return pts_prop
|
127 |
+
|
128 |
+
|
129 |
+
# Reconstruction function from predict value into plate crpoped from image
|
130 |
+
def reconstruct(I, Iresized, Yr, lp_threshold):
|
131 |
+
# 4 max-pooling layers, stride = 2
|
132 |
+
net_stride = 2 ** 4
|
133 |
+
side = ((208 + 40) / 2) / net_stride
|
134 |
+
|
135 |
+
# one line and two lines license plate size
|
136 |
+
one_line = (470, 110)
|
137 |
+
two_lines = (280, 200)
|
138 |
+
|
139 |
+
Probs = Yr[..., 0]
|
140 |
+
Affines = Yr[..., 2:]
|
141 |
+
|
142 |
+
xx, yy = np.where(Probs > lp_threshold)
|
143 |
+
# CNN input image size
|
144 |
+
WH = getWH(Iresized.shape)
|
145 |
+
# output feature map size
|
146 |
+
MN = WH / net_stride
|
147 |
+
|
148 |
+
vxx = vyy = 0.5 # alpha
|
149 |
+
base = lambda vx, vy: np.matrix([[-vx, -vy, 1], [vx, -vy, 1], [vx, vy, 1], [-vx, vy, 1]]).T
|
150 |
+
labels = []
|
151 |
+
labels_frontal = []
|
152 |
+
|
153 |
+
for i in range(len(xx)):
|
154 |
+
x, y = xx[i], yy[i]
|
155 |
+
affine = Affines[x, y]
|
156 |
+
prob = Probs[x, y]
|
157 |
+
|
158 |
+
mn = np.array([float(y) + 0.5, float(x) + 0.5])
|
159 |
+
|
160 |
+
# affine transformation matrix
|
161 |
+
A = np.reshape(affine, (2, 3))
|
162 |
+
A[0, 0] = max(A[0, 0], 0)
|
163 |
+
A[1, 1] = max(A[1, 1], 0)
|
164 |
+
# identity transformation
|
165 |
+
B = np.zeros((2, 3))
|
166 |
+
B[0, 0] = max(A[0, 0], 0)
|
167 |
+
B[1, 1] = max(A[1, 1], 0)
|
168 |
+
|
169 |
+
pts = np.array(A * base(vxx, vyy))
|
170 |
+
pts_frontal = np.array(B * base(vxx, vyy))
|
171 |
+
|
172 |
+
pts_prop = normal(pts, side, mn, MN)
|
173 |
+
frontal = normal(pts_frontal, side, mn, MN)
|
174 |
+
|
175 |
+
labels.append(DLabel(0, pts_prop, prob))
|
176 |
+
labels_frontal.append(DLabel(0, frontal, prob))
|
177 |
+
|
178 |
+
final_labels = nms(labels, 0.1)
|
179 |
+
final_labels_frontal = nms(labels_frontal, 0.1)
|
180 |
+
|
181 |
+
# print(final_labels_frontal)
|
182 |
+
assert final_labels_frontal, "" # "No License plate is founded!"
|
183 |
+
|
184 |
+
# LP size and type
|
185 |
+
out_size, lp_type = (two_lines, 2) if (
|
186 |
+
(final_labels_frontal[0].wh()[0] / final_labels_frontal[0].wh()[1]) < 1.7) else (one_line, 1)
|
187 |
+
|
188 |
+
TLp = []
|
189 |
+
Cor = []
|
190 |
+
if len(final_labels):
|
191 |
+
final_labels.sort(key=lambda x: x.prob(), reverse=True)
|
192 |
+
for _, label in enumerate(final_labels):
|
193 |
+
t_ptsh = getRectPts(0, 0, out_size[0], out_size[1])
|
194 |
+
ptsh = np.concatenate((label.pts * getWH(I.shape).reshape((2, 1)), np.ones((1, 4))))
|
195 |
+
H = find_T_matrix(ptsh, t_ptsh)
|
196 |
+
Ilp = cv2.warpPerspective(I, H, out_size, borderValue=0)
|
197 |
+
# cv2.imshow("plate", Ilp)
|
198 |
+
# cv2.waitKey(0)
|
199 |
+
TLp.append(Ilp)
|
200 |
+
Cor.append(ptsh)
|
201 |
+
return final_labels, TLp, lp_type, Cor
|
202 |
+
|
203 |
+
|
204 |
+
def detect_lp(graph, sess, model, I, max_dim, lp_threshold):
|
205 |
+
min_dim_img = min(I.shape[:2])
|
206 |
+
factor = float(max_dim) / min_dim_img
|
207 |
+
w, h = (np.array(I.shape[1::-1], dtype=float) * factor).astype(int).tolist()
|
208 |
+
Iresized = cv2.resize(I, (w, h))
|
209 |
+
T = Iresized.copy()
|
210 |
+
T = T.reshape((1, T.shape[0], T.shape[1], T.shape[2]))
|
211 |
+
with graph.as_default():
|
212 |
+
set_session(sess)
|
213 |
+
|
214 |
+
|
215 |
+
Yr = model.predict(T)
|
216 |
+
# print("1: ",Yr)
|
217 |
+
Yr = np.squeeze(Yr)
|
218 |
+
# print("2: ",Yr)
|
219 |
+
# print(Yr.shape)
|
220 |
+
L, TLp, lp_type, Cor = reconstruct(I, Iresized, Yr, lp_threshold)
|
221 |
+
return L, TLp, lp_type, Cor
|