Upload local_utils.py
Browse files- local_utils.py +221 -0
local_utils.py
ADDED
|
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pylint: disable=invalid-name, redefined-outer-name, missing-docstring, non-parent-init-called, trailing-whitespace, line-too-long
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
from tensorflow.python.keras.backend import set_session
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Label:
|
| 9 |
+
def __init__(self, cl=-1, tl=np.array([0., 0.]), br=np.array([0., 0.]), prob=None):
|
| 10 |
+
self.__tl = tl
|
| 11 |
+
self.__br = br
|
| 12 |
+
self.__cl = cl
|
| 13 |
+
self.__prob = prob
|
| 14 |
+
|
| 15 |
+
def __str__(self):
|
| 16 |
+
return 'Class: %d, top left(x: %f, y: %f), bottom right(x: %f, y: %f)' % (
|
| 17 |
+
self.__cl, self.__tl[0], self.__tl[1], self.__br[0], self.__br[1])
|
| 18 |
+
|
| 19 |
+
def copy(self):
|
| 20 |
+
return Label(self.__cl, self.__tl, self.__br)
|
| 21 |
+
|
| 22 |
+
def wh(self): return self.__br - self.__tl
|
| 23 |
+
|
| 24 |
+
def cc(self): return self.__tl + self.wh() / 2
|
| 25 |
+
|
| 26 |
+
def tl(self): return self.__tl
|
| 27 |
+
|
| 28 |
+
def br(self): return self.__br
|
| 29 |
+
|
| 30 |
+
def tr(self): return np.array([self.__br[0], self.__tl[1]])
|
| 31 |
+
|
| 32 |
+
def bl(self): return np.array([self.__tl[0], self.__br[1]])
|
| 33 |
+
|
| 34 |
+
def cl(self): return self.__cl
|
| 35 |
+
|
| 36 |
+
def area(self): return np.prod(self.wh())
|
| 37 |
+
|
| 38 |
+
def prob(self): return self.__prob
|
| 39 |
+
|
| 40 |
+
def set_class(self, cl):
|
| 41 |
+
self.__cl = cl
|
| 42 |
+
|
| 43 |
+
def set_tl(self, tl):
|
| 44 |
+
self.__tl = tl
|
| 45 |
+
|
| 46 |
+
def set_br(self, br):
|
| 47 |
+
self.__br = br
|
| 48 |
+
|
| 49 |
+
def set_wh(self, wh):
|
| 50 |
+
cc = self.cc()
|
| 51 |
+
self.__tl = cc - .5 * wh
|
| 52 |
+
self.__br = cc + .5 * wh
|
| 53 |
+
|
| 54 |
+
def set_prob(self, prob):
|
| 55 |
+
self.__prob = prob
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class DLabel(Label):
|
| 59 |
+
def __init__(self, cl, pts, prob):
|
| 60 |
+
self.pts = pts
|
| 61 |
+
tl = np.amin(pts, axis=1)
|
| 62 |
+
br = np.amax(pts, axis=1)
|
| 63 |
+
Label.__init__(self, cl, tl, br, prob)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def getWH(shape):
|
| 67 |
+
return np.array(shape[1::-1]).astype(float)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def IOU(tl1, br1, tl2, br2):
|
| 71 |
+
wh1, wh2 = br1 - tl1, br2 - tl2
|
| 72 |
+
assert ((wh1 >= 0).all() and (wh2 >= 0).all())
|
| 73 |
+
|
| 74 |
+
intersection_wh = np.maximum(np.minimum(br1, br2) - np.maximum(tl1, tl2), 0)
|
| 75 |
+
intersection_area = np.prod(intersection_wh)
|
| 76 |
+
area1, area2 = (np.prod(wh1), np.prod(wh2))
|
| 77 |
+
union_area = area1 + area2 - intersection_area
|
| 78 |
+
return intersection_area / union_area
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def IOU_labels(l1, l2):
|
| 82 |
+
return IOU(l1.tl(), l1.br(), l2.tl(), l2.br())
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def nms(Labels, iou_threshold=0.5):
|
| 86 |
+
SelectedLabels = []
|
| 87 |
+
Labels.sort(key=lambda l: l.prob(), reverse=True)
|
| 88 |
+
|
| 89 |
+
for label in Labels:
|
| 90 |
+
non_overlap = True
|
| 91 |
+
for sel_label in SelectedLabels:
|
| 92 |
+
if IOU_labels(label, sel_label) > iou_threshold:
|
| 93 |
+
non_overlap = False
|
| 94 |
+
break
|
| 95 |
+
|
| 96 |
+
if non_overlap:
|
| 97 |
+
SelectedLabels.append(label)
|
| 98 |
+
return SelectedLabels
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def find_T_matrix(pts, t_pts):
|
| 102 |
+
A = np.zeros((8, 9))
|
| 103 |
+
for i in range(0, 4):
|
| 104 |
+
xi = pts[:, i]
|
| 105 |
+
xil = t_pts[:, i]
|
| 106 |
+
xi = xi.T
|
| 107 |
+
|
| 108 |
+
A[i * 2, 3:6] = -xil[2] * xi
|
| 109 |
+
A[i * 2, 6:] = xil[1] * xi
|
| 110 |
+
A[i * 2 + 1, :3] = xil[2] * xi
|
| 111 |
+
A[i * 2 + 1, 6:] = -xil[0] * xi
|
| 112 |
+
|
| 113 |
+
[U, S, V] = np.linalg.svd(A)
|
| 114 |
+
H = V[-1, :].reshape((3, 3))
|
| 115 |
+
return H
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def getRectPts(tlx, tly, brx, bry):
|
| 119 |
+
return np.matrix([[tlx, brx, brx, tlx], [tly, tly, bry, bry], [1, 1, 1, 1]], dtype=float)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def normal(pts, side, mn, MN):
|
| 123 |
+
pts_MN_center_mn = pts * side
|
| 124 |
+
pts_MN = pts_MN_center_mn + mn.reshape((2, 1))
|
| 125 |
+
pts_prop = pts_MN / MN.reshape((2, 1))
|
| 126 |
+
return pts_prop
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# Reconstruction function from predict value into plate crpoped from image
|
| 130 |
+
def reconstruct(I, Iresized, Yr, lp_threshold):
|
| 131 |
+
# 4 max-pooling layers, stride = 2
|
| 132 |
+
net_stride = 2 ** 4
|
| 133 |
+
side = ((208 + 40) / 2) / net_stride
|
| 134 |
+
|
| 135 |
+
# one line and two lines license plate size
|
| 136 |
+
one_line = (470, 110)
|
| 137 |
+
two_lines = (280, 200)
|
| 138 |
+
|
| 139 |
+
Probs = Yr[..., 0]
|
| 140 |
+
Affines = Yr[..., 2:]
|
| 141 |
+
|
| 142 |
+
xx, yy = np.where(Probs > lp_threshold)
|
| 143 |
+
# CNN input image size
|
| 144 |
+
WH = getWH(Iresized.shape)
|
| 145 |
+
# output feature map size
|
| 146 |
+
MN = WH / net_stride
|
| 147 |
+
|
| 148 |
+
vxx = vyy = 0.5 # alpha
|
| 149 |
+
base = lambda vx, vy: np.matrix([[-vx, -vy, 1], [vx, -vy, 1], [vx, vy, 1], [-vx, vy, 1]]).T
|
| 150 |
+
labels = []
|
| 151 |
+
labels_frontal = []
|
| 152 |
+
|
| 153 |
+
for i in range(len(xx)):
|
| 154 |
+
x, y = xx[i], yy[i]
|
| 155 |
+
affine = Affines[x, y]
|
| 156 |
+
prob = Probs[x, y]
|
| 157 |
+
|
| 158 |
+
mn = np.array([float(y) + 0.5, float(x) + 0.5])
|
| 159 |
+
|
| 160 |
+
# affine transformation matrix
|
| 161 |
+
A = np.reshape(affine, (2, 3))
|
| 162 |
+
A[0, 0] = max(A[0, 0], 0)
|
| 163 |
+
A[1, 1] = max(A[1, 1], 0)
|
| 164 |
+
# identity transformation
|
| 165 |
+
B = np.zeros((2, 3))
|
| 166 |
+
B[0, 0] = max(A[0, 0], 0)
|
| 167 |
+
B[1, 1] = max(A[1, 1], 0)
|
| 168 |
+
|
| 169 |
+
pts = np.array(A * base(vxx, vyy))
|
| 170 |
+
pts_frontal = np.array(B * base(vxx, vyy))
|
| 171 |
+
|
| 172 |
+
pts_prop = normal(pts, side, mn, MN)
|
| 173 |
+
frontal = normal(pts_frontal, side, mn, MN)
|
| 174 |
+
|
| 175 |
+
labels.append(DLabel(0, pts_prop, prob))
|
| 176 |
+
labels_frontal.append(DLabel(0, frontal, prob))
|
| 177 |
+
|
| 178 |
+
final_labels = nms(labels, 0.1)
|
| 179 |
+
final_labels_frontal = nms(labels_frontal, 0.1)
|
| 180 |
+
|
| 181 |
+
# print(final_labels_frontal)
|
| 182 |
+
assert final_labels_frontal, "" # "No License plate is founded!"
|
| 183 |
+
|
| 184 |
+
# LP size and type
|
| 185 |
+
out_size, lp_type = (two_lines, 2) if (
|
| 186 |
+
(final_labels_frontal[0].wh()[0] / final_labels_frontal[0].wh()[1]) < 1.7) else (one_line, 1)
|
| 187 |
+
|
| 188 |
+
TLp = []
|
| 189 |
+
Cor = []
|
| 190 |
+
if len(final_labels):
|
| 191 |
+
final_labels.sort(key=lambda x: x.prob(), reverse=True)
|
| 192 |
+
for _, label in enumerate(final_labels):
|
| 193 |
+
t_ptsh = getRectPts(0, 0, out_size[0], out_size[1])
|
| 194 |
+
ptsh = np.concatenate((label.pts * getWH(I.shape).reshape((2, 1)), np.ones((1, 4))))
|
| 195 |
+
H = find_T_matrix(ptsh, t_ptsh)
|
| 196 |
+
Ilp = cv2.warpPerspective(I, H, out_size, borderValue=0)
|
| 197 |
+
# cv2.imshow("plate", Ilp)
|
| 198 |
+
# cv2.waitKey(0)
|
| 199 |
+
TLp.append(Ilp)
|
| 200 |
+
Cor.append(ptsh)
|
| 201 |
+
return final_labels, TLp, lp_type, Cor
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def detect_lp(graph, sess, model, I, max_dim, lp_threshold):
|
| 205 |
+
min_dim_img = min(I.shape[:2])
|
| 206 |
+
factor = float(max_dim) / min_dim_img
|
| 207 |
+
w, h = (np.array(I.shape[1::-1], dtype=float) * factor).astype(int).tolist()
|
| 208 |
+
Iresized = cv2.resize(I, (w, h))
|
| 209 |
+
T = Iresized.copy()
|
| 210 |
+
T = T.reshape((1, T.shape[0], T.shape[1], T.shape[2]))
|
| 211 |
+
with graph.as_default():
|
| 212 |
+
set_session(sess)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
Yr = model.predict(T)
|
| 216 |
+
# print("1: ",Yr)
|
| 217 |
+
Yr = np.squeeze(Yr)
|
| 218 |
+
# print("2: ",Yr)
|
| 219 |
+
# print(Yr.shape)
|
| 220 |
+
L, TLp, lp_type, Cor = reconstruct(I, Iresized, Yr, lp_threshold)
|
| 221 |
+
return L, TLp, lp_type, Cor
|