import streamlit as st import torch import pickle # Load the saved model on the CPU model = torch.load('saved_model.pth', map_location=torch.device('cpu')) # Load the saved tokenizer with open('tokenizer.pkl', 'rb') as f: tokenizer = pickle.load(f) st.title("Text Classification Streamlit App") input_text = st.text_input("Enter text:") if st.button("Predict"): with torch.no_grad(): inputs = tokenizer(input_text, return_tensors="pt") logits = model(**inputs).logits predicted_class = torch.argmax(logits, dim=1).item() st.write(f"Predicted Class: {predicted_class}")