Spaces:
Running
on
Zero
Running
on
Zero
Upload 4 files
Browse files- Conditioned_CelebA_Latent_Diffusion.ipynb +0 -0
- app.py +91 -0
- model.py +1823 -0
- requirements.txt +7 -0
Conditioned_CelebA_Latent_Diffusion.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
app.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from model import UNet, VQVAE, sample_ddpm_inference
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
import json
|
| 6 |
+
|
| 7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 8 |
+
|
| 9 |
+
config_path = hf_hub_download(
|
| 10 |
+
repo_id="RishabA/celeba-cond-ddpm", filename="config.json"
|
| 11 |
+
)
|
| 12 |
+
with open(config_path, "r") as f:
|
| 13 |
+
config = json.load(f)
|
| 14 |
+
|
| 15 |
+
# Download checkpoint files. Adjust file paths if needed.
|
| 16 |
+
ldm_ckpt_path = hf_hub_download(
|
| 17 |
+
repo_id="RishabA/celeba-cond-ddpm", filename="celebhq/ddpm_ckpt_class_cond.pth"
|
| 18 |
+
)
|
| 19 |
+
vae_ckpt_path = hf_hub_download(
|
| 20 |
+
repo_id="RishabA/celeba-cond-ddpm", filename="celebhq/vqvae_autoencoder_ckpt.pth"
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 24 |
+
unet = UNet(config["autoencoder_params"]["z_channels"], config["ldm_params"]).to(device)
|
| 25 |
+
vae = VQVAE(
|
| 26 |
+
config["dataset_params"]["image_channels"], config["autoencoder_params"]
|
| 27 |
+
).to(device)
|
| 28 |
+
|
| 29 |
+
# Load the pretrained weights
|
| 30 |
+
unet_state = torch.load(ldm_ckpt_path, map_location=device)
|
| 31 |
+
unet.load_state_dict(unet_state["model_state_dict"])
|
| 32 |
+
|
| 33 |
+
vae_state = torch.load(vae_ckpt_path, map_location=device)
|
| 34 |
+
vae.load_state_dict(vae_state["model_state_dict"])
|
| 35 |
+
|
| 36 |
+
unet.eval()
|
| 37 |
+
vae.eval()
|
| 38 |
+
|
| 39 |
+
print("Model and checkpoints loaded successfully!")
|
| 40 |
+
print(unet)
|
| 41 |
+
print(vae)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def generate_image(text_prompt, mask_upload):
|
| 45 |
+
"""
|
| 46 |
+
text_prompt: A text prompt provided by the user.
|
| 47 |
+
mask_upload: Either a PIL image (uploaded) or None.
|
| 48 |
+
guidance_scale: Float slider setting for classifier-free guidance.
|
| 49 |
+
"""
|
| 50 |
+
return sample_ddpm_inference(unet, vae, text_prompt, mask_upload, device)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
css_str = """
|
| 54 |
+
body {
|
| 55 |
+
background-color: #f7f7f7;
|
| 56 |
+
}
|
| 57 |
+
.title {
|
| 58 |
+
font-size: 48px;
|
| 59 |
+
text-align: center;
|
| 60 |
+
margin-top: 20px;
|
| 61 |
+
}
|
| 62 |
+
.description {
|
| 63 |
+
font-size: 20px;
|
| 64 |
+
text-align: center;
|
| 65 |
+
margin-bottom: 40px;
|
| 66 |
+
}
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
with gr.Blocks(css=css_str) as demo:
|
| 70 |
+
gr.Markdown("<div class='title'>Conditioned Latent Diffusion with CelebA</div>")
|
| 71 |
+
gr.Markdown(
|
| 72 |
+
"<div class='description'>Enter a text prompt and (optionally) upload a mask image for conditioning; the model will generate an image accordingly.</div>"
|
| 73 |
+
)
|
| 74 |
+
with gr.Row():
|
| 75 |
+
text_input = gr.Textbox(
|
| 76 |
+
label="Text Prompt",
|
| 77 |
+
lines=2,
|
| 78 |
+
placeholder="E.g., 'He is a man with brown hair.'",
|
| 79 |
+
)
|
| 80 |
+
mask_input = gr.Image(type="pil", label="Optional Mask for Conditioning")
|
| 81 |
+
generate_button = gr.Button("Generate Image")
|
| 82 |
+
output_image = gr.Image(label="Generated Image", type="pil")
|
| 83 |
+
|
| 84 |
+
generate_button.click(
|
| 85 |
+
fn=generate_image,
|
| 86 |
+
inputs=[text_input, mask_input],
|
| 87 |
+
outputs=output_image,
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
if __name__ == "__main__":
|
| 91 |
+
demo.launch(share=True)
|
model.py
ADDED
|
@@ -0,0 +1,1823 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import os
|
| 3 |
+
import random
|
| 4 |
+
import glob
|
| 5 |
+
import pickle
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
import torchvision.transforms as transforms
|
| 10 |
+
from torch.optim import Adam
|
| 11 |
+
from torchvision.utils import make_grid
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from transformers import (
|
| 14 |
+
DistilBertModel,
|
| 15 |
+
DistilBertTokenizer,
|
| 16 |
+
CLIPTokenizer,
|
| 17 |
+
CLIPTextModel,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
dataset_params = {
|
| 21 |
+
"image_path": "data/CelebAMask-HQ",
|
| 22 |
+
"image_channels": 3,
|
| 23 |
+
"image_size": 256,
|
| 24 |
+
"name": "celebhq",
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
diffusion_params = {
|
| 28 |
+
"num_timesteps": 1000,
|
| 29 |
+
"beta_start": 0.00085,
|
| 30 |
+
"beta_end": 0.012,
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
ldm_params = {
|
| 34 |
+
"down_channels": [256, 384, 512, 768],
|
| 35 |
+
"mid_channels": [768, 512],
|
| 36 |
+
"down_sample": [True, True, True],
|
| 37 |
+
"attn_down": [True, True, True], # Attention in the DownBlock and UpBlock of VQ-VAE
|
| 38 |
+
"time_emb_dim": 512,
|
| 39 |
+
"norm_channels": 32,
|
| 40 |
+
"num_heads": 16,
|
| 41 |
+
"conv_out_channels": 128,
|
| 42 |
+
"num_down_layers": 2,
|
| 43 |
+
"num_mid_layers": 2,
|
| 44 |
+
"num_up_layers": 2,
|
| 45 |
+
"condition_config": {
|
| 46 |
+
"condition_types": ["text", "image"],
|
| 47 |
+
"text_condition_config": {
|
| 48 |
+
"text_embed_model": "clip",
|
| 49 |
+
"train_text_embed_model": False,
|
| 50 |
+
"text_embed_dim": 512, # Each token should map to text_embed_dim sized vector
|
| 51 |
+
"cond_drop_prob": 0.1, # Probability of dropping conditioning during training to allow the model to generate images without conditioning as well
|
| 52 |
+
},
|
| 53 |
+
"image_condition_config": {
|
| 54 |
+
"image_condition_input_channels": 18, # CelebA has 18 classes excluding background
|
| 55 |
+
"image_condition_output_channels": 3,
|
| 56 |
+
"image_condition_h": 512, # Mask height
|
| 57 |
+
"image_condition_w": 512, # Mask width
|
| 58 |
+
"cond_drop_prob": 0.1, # Probability of dropping conditioning during training to allow the model to generate images without conditioning as well
|
| 59 |
+
},
|
| 60 |
+
},
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
autoencoder_params = {
|
| 64 |
+
"z_channels": 4,
|
| 65 |
+
"codebook_size": 8192,
|
| 66 |
+
"down_channels": [64, 128, 256, 256],
|
| 67 |
+
"mid_channels": [256, 256],
|
| 68 |
+
"down_sample": [True, True, True],
|
| 69 |
+
"attn_down": [
|
| 70 |
+
False,
|
| 71 |
+
False,
|
| 72 |
+
False,
|
| 73 |
+
], # No attention in the DownBlock and UpBlock of VQ-VAE
|
| 74 |
+
"norm_channels": 32,
|
| 75 |
+
"num_heads": 4,
|
| 76 |
+
"num_down_layers": 2,
|
| 77 |
+
"num_mid_layers": 2,
|
| 78 |
+
"num_up_layers": 2,
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
train_params = {
|
| 82 |
+
"seed": 1111,
|
| 83 |
+
"task_name": "celebhq", # Folder to save models and images to
|
| 84 |
+
"ldm_batch_size": 16,
|
| 85 |
+
"autoencoder_batch_size": 4,
|
| 86 |
+
"disc_start": 15000,
|
| 87 |
+
"disc_weight": 0.5,
|
| 88 |
+
"codebook_weight": 1,
|
| 89 |
+
"commitment_beta": 0.2,
|
| 90 |
+
"perceptual_weight": 1,
|
| 91 |
+
"kl_weight": 0.000005,
|
| 92 |
+
"ldm_epochs": 100,
|
| 93 |
+
"autoencoder_epochs": 20,
|
| 94 |
+
"num_samples": 1,
|
| 95 |
+
"num_grid_rows": 1,
|
| 96 |
+
"ldm_lr": 0.000005,
|
| 97 |
+
"autoencoder_lr": 0.00001,
|
| 98 |
+
"autoencoder_acc_steps": 4,
|
| 99 |
+
"autoencoder_img_save_steps": 64,
|
| 100 |
+
"save_latents": True,
|
| 101 |
+
"cf_guidance_scale": 1.0,
|
| 102 |
+
"vqvae_latent_dir_name": "vqvae_latents",
|
| 103 |
+
"ldm_ckpt_name": "ddpm_ckpt_class_cond.pth",
|
| 104 |
+
"vqvae_autoencoder_ckpt_name": "vqvae_autoencoder_ckpt.pth",
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def get_config_value(config, key, default_value):
|
| 109 |
+
return config[key] if key in config else default_value
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def spatial_average(in_tens, keepdim=True):
|
| 113 |
+
return in_tens.mean([2, 3], keepdim=keepdim)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class LinearNoiseScheduler:
|
| 117 |
+
def __init__(self, num_timesteps, beta_start, beta_end):
|
| 118 |
+
self.num_timesteps = num_timesteps
|
| 119 |
+
self.beta_start = beta_start
|
| 120 |
+
self.beta_end = beta_end
|
| 121 |
+
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_timesteps) ** 2
|
| 122 |
+
self.alphas = 1.0 - self.betas
|
| 123 |
+
self.alpha_cum_prod = torch.cumprod(self.alphas, dim=0)
|
| 124 |
+
self.sqrt_alpha_cum_prod = torch.sqrt(self.alpha_cum_prod)
|
| 125 |
+
self.sqrt_one_minus_alpha_cum_prod = torch.sqrt(1 - self.alpha_cum_prod)
|
| 126 |
+
|
| 127 |
+
def add_noise(self, original, noise, t):
|
| 128 |
+
# original: (batch_size, c, h, w), t: tensor of timesteps (batch_size,)
|
| 129 |
+
batch_size = original.shape[0]
|
| 130 |
+
sqrt_alpha_cum_prod = self.sqrt_alpha_cum_prod.to(original.device)[t].view(
|
| 131 |
+
batch_size, 1, 1, 1
|
| 132 |
+
)
|
| 133 |
+
sqrt_one_minus_alpha_cum_prod = self.sqrt_one_minus_alpha_cum_prod.to(
|
| 134 |
+
original.device
|
| 135 |
+
)[t].view(batch_size, 1, 1, 1)
|
| 136 |
+
return sqrt_alpha_cum_prod * original + sqrt_one_minus_alpha_cum_prod * noise
|
| 137 |
+
|
| 138 |
+
def sample_prev_timestep(self, xt, noise_pred, t):
|
| 139 |
+
batch_size = xt.shape[0]
|
| 140 |
+
alpha_cum_prod_t = self.alpha_cum_prod.to(xt.device)[t].view(
|
| 141 |
+
batch_size, 1, 1, 1
|
| 142 |
+
)
|
| 143 |
+
sqrt_one_minus_alpha_cum_prod_t = self.sqrt_one_minus_alpha_cum_prod.to(
|
| 144 |
+
xt.device
|
| 145 |
+
)[t].view(batch_size, 1, 1, 1)
|
| 146 |
+
x0 = (xt - sqrt_one_minus_alpha_cum_prod_t * noise_pred) / torch.sqrt(
|
| 147 |
+
alpha_cum_prod_t
|
| 148 |
+
)
|
| 149 |
+
x0 = torch.clamp(x0, -1.0, 1.0)
|
| 150 |
+
betas_t = self.betas.to(xt.device)[t].view(batch_size, 1, 1, 1)
|
| 151 |
+
mean = (
|
| 152 |
+
xt - betas_t / sqrt_one_minus_alpha_cum_prod_t * noise_pred
|
| 153 |
+
) / torch.sqrt(self.alphas.to(xt.device)[t].view(batch_size, 1, 1, 1))
|
| 154 |
+
if t[0] == 0:
|
| 155 |
+
return mean, x0
|
| 156 |
+
else:
|
| 157 |
+
prev_alpha_cum_prod = self.alpha_cum_prod.to(xt.device)[
|
| 158 |
+
(t - 1).clamp(min=0)
|
| 159 |
+
].view(batch_size, 1, 1, 1)
|
| 160 |
+
variance = (1 - prev_alpha_cum_prod) / (1 - alpha_cum_prod_t) * betas_t
|
| 161 |
+
sigma = variance.sqrt()
|
| 162 |
+
z = torch.randn_like(xt)
|
| 163 |
+
return mean + sigma * z, x0
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def get_tokenizer_and_model(model_type, device, eval_mode=True):
|
| 167 |
+
assert model_type in (
|
| 168 |
+
"bert",
|
| 169 |
+
"clip",
|
| 170 |
+
), "Text model can only be one of 'clip' or 'bert'"
|
| 171 |
+
if model_type == "bert":
|
| 172 |
+
text_tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
| 173 |
+
text_model = DistilBertModel.from_pretrained("distilbert-base-uncased").to(
|
| 174 |
+
device
|
| 175 |
+
)
|
| 176 |
+
else:
|
| 177 |
+
text_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch16")
|
| 178 |
+
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch16").to(
|
| 179 |
+
device
|
| 180 |
+
)
|
| 181 |
+
if eval_mode:
|
| 182 |
+
text_model.eval()
|
| 183 |
+
return text_tokenizer, text_model
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def get_text_representation(text, text_tokenizer, text_model, device, max_length=77):
|
| 187 |
+
token_output = text_tokenizer(
|
| 188 |
+
text,
|
| 189 |
+
truncation=True,
|
| 190 |
+
padding="max_length",
|
| 191 |
+
return_attention_mask=True,
|
| 192 |
+
max_length=max_length,
|
| 193 |
+
)
|
| 194 |
+
tokens_tensor = torch.tensor(token_output["input_ids"]).to(device)
|
| 195 |
+
mask_tensor = torch.tensor(token_output["attention_mask"]).to(device)
|
| 196 |
+
text_embed = text_model(tokens_tensor, attention_mask=mask_tensor).last_hidden_state
|
| 197 |
+
return text_embed
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def get_time_embedding(time_steps, temb_dim):
|
| 201 |
+
"""
|
| 202 |
+
Convert time steps tensor into an embedding using the sinusoidal time embedding formula
|
| 203 |
+
time_steps: 1D tensor of length batch size
|
| 204 |
+
temb_dim: Dimension of the embedding
|
| 205 |
+
"""
|
| 206 |
+
assert temb_dim % 2 == 0, "time embedding dimension must be divisible by 2"
|
| 207 |
+
|
| 208 |
+
# factor = 10000^(2i/d_model)
|
| 209 |
+
factor = 10000 ** (
|
| 210 |
+
(
|
| 211 |
+
torch.arange(
|
| 212 |
+
start=0,
|
| 213 |
+
end=temb_dim // 2,
|
| 214 |
+
dtype=torch.float32,
|
| 215 |
+
device=time_steps.device,
|
| 216 |
+
)
|
| 217 |
+
/ (temb_dim // 2)
|
| 218 |
+
)
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
t_emb = time_steps.unsqueeze(dim=-1).repeat(1, temb_dim // 2) / factor
|
| 222 |
+
t_emb = torch.cat([torch.sin(t_emb), torch.cos(t_emb)], dim=-1)
|
| 223 |
+
|
| 224 |
+
return t_emb # (batch_size, temb_dim)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
class DownBlock(nn.Module):
|
| 228 |
+
"""
|
| 229 |
+
Down conv block with attention.
|
| 230 |
+
1. Resnet block with time embedding
|
| 231 |
+
2. Attention block
|
| 232 |
+
3. Downsample
|
| 233 |
+
|
| 234 |
+
in_channels: Number of channels in the input feature map.
|
| 235 |
+
out_channels: Number of channels produced by this block.
|
| 236 |
+
t_emb_dim: Dimension of the time embedding. Only use for UNet for Diffusion. In an AutoEncoder, set it to None.
|
| 237 |
+
down_sample: Whether to apply downsampling at the end.
|
| 238 |
+
num_heads: Number of attention heads (used if attention is enabled).
|
| 239 |
+
num_layers: How many sub-blocks to apply in sequence.
|
| 240 |
+
attn: Whether to apply self-attention
|
| 241 |
+
norm_channels: Number of groups for GroupNorm.
|
| 242 |
+
cross_attn: Whether to apply cross-attention.
|
| 243 |
+
context_dim: If performing cross-attention, provide a context_dim for extra conditioning context.
|
| 244 |
+
"""
|
| 245 |
+
|
| 246 |
+
def __init__(
|
| 247 |
+
self,
|
| 248 |
+
in_channels,
|
| 249 |
+
out_channels,
|
| 250 |
+
t_emb_dim,
|
| 251 |
+
down_sample,
|
| 252 |
+
num_heads,
|
| 253 |
+
num_layers,
|
| 254 |
+
attn,
|
| 255 |
+
norm_channels,
|
| 256 |
+
cross_attn=False,
|
| 257 |
+
context_dim=None,
|
| 258 |
+
):
|
| 259 |
+
super().__init__()
|
| 260 |
+
|
| 261 |
+
self.num_layers = num_layers
|
| 262 |
+
self.down_sample = down_sample
|
| 263 |
+
self.attn = attn
|
| 264 |
+
self.context_dim = context_dim
|
| 265 |
+
self.cross_attn = cross_attn
|
| 266 |
+
self.t_emb_dim = t_emb_dim
|
| 267 |
+
|
| 268 |
+
self.resnet_conv_first = nn.ModuleList(
|
| 269 |
+
[
|
| 270 |
+
nn.Sequential(
|
| 271 |
+
nn.GroupNorm(
|
| 272 |
+
norm_channels, in_channels if i == 0 else out_channels
|
| 273 |
+
), # Normalizes over channels. For the first sub-block, the in_channels=in_channels, else out_channels
|
| 274 |
+
nn.SiLU(),
|
| 275 |
+
nn.Conv2d(
|
| 276 |
+
in_channels=(in_channels if i == 0 else out_channels),
|
| 277 |
+
out_channels=out_channels,
|
| 278 |
+
kernel_size=3,
|
| 279 |
+
stride=1,
|
| 280 |
+
padding=1,
|
| 281 |
+
), # (batch_size, c, h, w) -> (batch_size, out_channels, h, w)
|
| 282 |
+
)
|
| 283 |
+
for i in range(num_layers)
|
| 284 |
+
]
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
# Only add the time embedding for diffusion and not AutoEncoder
|
| 288 |
+
if self.t_emb_dim is not None:
|
| 289 |
+
self.t_emb_layers = nn.ModuleList(
|
| 290 |
+
[
|
| 291 |
+
nn.Sequential(
|
| 292 |
+
nn.SiLU(),
|
| 293 |
+
nn.Linear(
|
| 294 |
+
in_features=self.t_emb_dim, out_features=out_channels
|
| 295 |
+
), # (batch_size, t_emb_dim) -> (batch_size, out_channels)
|
| 296 |
+
)
|
| 297 |
+
for i in range(num_layers)
|
| 298 |
+
]
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
self.resnet_conv_second = nn.ModuleList(
|
| 302 |
+
[
|
| 303 |
+
nn.Sequential(
|
| 304 |
+
nn.GroupNorm(norm_channels, out_channels),
|
| 305 |
+
nn.SiLU(),
|
| 306 |
+
nn.Conv2d(
|
| 307 |
+
in_channels=out_channels,
|
| 308 |
+
out_channels=out_channels,
|
| 309 |
+
kernel_size=3,
|
| 310 |
+
stride=1,
|
| 311 |
+
padding=1,
|
| 312 |
+
), # (batch_size, out_channels, h, w) -> (batch_size, out_channels, h, w)
|
| 313 |
+
)
|
| 314 |
+
for i in range(num_layers)
|
| 315 |
+
]
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
self.residual_input_conv = nn.ModuleList(
|
| 319 |
+
[
|
| 320 |
+
nn.Conv2d(
|
| 321 |
+
in_channels=(in_channels if i == 0 else out_channels),
|
| 322 |
+
out_channels=out_channels,
|
| 323 |
+
kernel_size=1,
|
| 324 |
+
stride=1,
|
| 325 |
+
padding=0,
|
| 326 |
+
) # (batch_size, in_channels, h, w) -> (batch_size, out_channels, h, w)
|
| 327 |
+
for i in range(num_layers)
|
| 328 |
+
]
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
if self.attn:
|
| 332 |
+
self.attention_norms = nn.ModuleList(
|
| 333 |
+
[nn.GroupNorm(norm_channels, out_channels) for i in range(num_layers)]
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
self.attentions = nn.ModuleList(
|
| 337 |
+
[
|
| 338 |
+
nn.MultiheadAttention(
|
| 339 |
+
embed_dim=out_channels, num_heads=num_heads, batch_first=True
|
| 340 |
+
)
|
| 341 |
+
for i in range(num_layers)
|
| 342 |
+
]
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
# Cross attention for text conditioning
|
| 346 |
+
if self.cross_attn:
|
| 347 |
+
assert (
|
| 348 |
+
context_dim is not None
|
| 349 |
+
), "Context Dimension must be passed for cross attention"
|
| 350 |
+
|
| 351 |
+
self.cross_attention_norms = nn.ModuleList(
|
| 352 |
+
[nn.GroupNorm(norm_channels, out_channels) for i in range(num_layers)]
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
self.cross_attentions = nn.ModuleList(
|
| 356 |
+
[
|
| 357 |
+
nn.MultiheadAttention(
|
| 358 |
+
embed_dim=out_channels, num_heads=num_heads, batch_first=True
|
| 359 |
+
)
|
| 360 |
+
for i in range(num_layers)
|
| 361 |
+
]
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
self.context_proj = nn.ModuleList(
|
| 365 |
+
[
|
| 366 |
+
nn.Linear(in_features=context_dim, out_features=out_channels)
|
| 367 |
+
for i in range(num_layers)
|
| 368 |
+
]
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
# Down sample by a factor of 2
|
| 372 |
+
self.down_sample_conv = (
|
| 373 |
+
nn.Conv2d(
|
| 374 |
+
in_channels=out_channels,
|
| 375 |
+
out_channels=out_channels,
|
| 376 |
+
kernel_size=4,
|
| 377 |
+
stride=2,
|
| 378 |
+
padding=1,
|
| 379 |
+
)
|
| 380 |
+
if self.down_sample
|
| 381 |
+
else nn.Identity()
|
| 382 |
+
) # (batch_size, out_channels, h / 2, w / 2)
|
| 383 |
+
|
| 384 |
+
def forward(self, x, t_emb=None, context=None):
|
| 385 |
+
out = x
|
| 386 |
+
for i in range(self.num_layers):
|
| 387 |
+
# Resnet block of UNET
|
| 388 |
+
resnet_input = out # (batch_size, c, h, w)
|
| 389 |
+
|
| 390 |
+
out = self.resnet_conv_first[i](out) # (batch_size, out_channels, h, w)
|
| 391 |
+
|
| 392 |
+
# Only add the time embedding for diffusion and not AutoEncoder
|
| 393 |
+
if self.t_emb_dim is not None:
|
| 394 |
+
# Add the embeddings for timesteps - (batch_size, t_emb_dim) -> (batch_size, out_channels, 1, 1)
|
| 395 |
+
out = out + self.t_emb_layers[i](t_emb).unsqueeze(dim=-1).unsqueeze(
|
| 396 |
+
dim=-1
|
| 397 |
+
) # (batch_size, out_channels, h, w)
|
| 398 |
+
|
| 399 |
+
out = self.resnet_conv_second[i](
|
| 400 |
+
out
|
| 401 |
+
) # (batch_size, out_channels, h, w) -> (batch_size, out_channels, h, w)
|
| 402 |
+
|
| 403 |
+
# Residual Connection
|
| 404 |
+
out = out + self.residual_input_conv[i](
|
| 405 |
+
resnet_input
|
| 406 |
+
) # (batch_size, out_channels, h, w)
|
| 407 |
+
|
| 408 |
+
# Only do for Diffusion and not for AutoEncoder
|
| 409 |
+
if self.attn:
|
| 410 |
+
# Attention block of UNET
|
| 411 |
+
batch_size, channels, h, w = (
|
| 412 |
+
out.shape
|
| 413 |
+
) # (batch_size, out_channels, h, w)
|
| 414 |
+
|
| 415 |
+
in_attn = out.reshape(
|
| 416 |
+
batch_size, channels, h * w
|
| 417 |
+
) # (batch_size, out_channels, h * w)
|
| 418 |
+
in_attn = self.attention_norms[i](in_attn)
|
| 419 |
+
in_attn = in_attn.transpose(1, 2) # (batch_size, h * w, out_channels)
|
| 420 |
+
|
| 421 |
+
# Self-Attention
|
| 422 |
+
out_attn, attn_weights = self.attentions[i](in_attn, in_attn, in_attn)
|
| 423 |
+
out_attn = out_attn.transpose(1, 2).reshape(
|
| 424 |
+
batch_size, channels, h, w
|
| 425 |
+
) # (batch_size, out_channels h, w)
|
| 426 |
+
|
| 427 |
+
# Skip connection
|
| 428 |
+
out = out + out_attn # (batch_size, out_channels h, w)
|
| 429 |
+
|
| 430 |
+
if self.cross_attn:
|
| 431 |
+
assert (
|
| 432 |
+
context is not None
|
| 433 |
+
), "context cannot be None if cross attention layers are used"
|
| 434 |
+
|
| 435 |
+
batch_size, channels, h, w = (
|
| 436 |
+
out.shape
|
| 437 |
+
) # (batch_size, out_channels, h, w)
|
| 438 |
+
|
| 439 |
+
in_attn = out.reshape(
|
| 440 |
+
batch_size, channels, h * w
|
| 441 |
+
) # (batch_size, out_channels, h * w)
|
| 442 |
+
in_attn = self.cross_attention_norms[i](in_attn)
|
| 443 |
+
in_attn = in_attn.transpose(1, 2) # (batch_size, h * w, out_channels)
|
| 444 |
+
|
| 445 |
+
assert (
|
| 446 |
+
context.shape[0] == x.shape[0]
|
| 447 |
+
and context.shape[-1] == self.context_dim
|
| 448 |
+
) # Make sure the batch_size and context_dim match with the model's parameters
|
| 449 |
+
context_proj = self.context_proj[i](
|
| 450 |
+
context
|
| 451 |
+
) # (batch_size, seq_len, context_dim) -> (batch_size, seq_len, out_channels)
|
| 452 |
+
|
| 453 |
+
# Cross-Attention
|
| 454 |
+
out_attn, attn_weights = self.cross_attentions[i](
|
| 455 |
+
in_attn, context_proj, context_proj
|
| 456 |
+
) # (batch_size, h * w, out_channels)
|
| 457 |
+
out_attn = out_attn.transpose(1, 2).reshape(
|
| 458 |
+
batch_size, channels, h, w
|
| 459 |
+
) # (batch_size, out_channels, h, w)
|
| 460 |
+
|
| 461 |
+
# Skip Connection
|
| 462 |
+
out = out + out_attn # (batch_size, out_channels, h, w)
|
| 463 |
+
|
| 464 |
+
# Downsampling
|
| 465 |
+
out = self.down_sample_conv(out) # (batch_size, out_channels, h / 2, w / 2)
|
| 466 |
+
return out
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
class MidBlock(nn.Module):
|
| 470 |
+
"""
|
| 471 |
+
Mid conv block with attention.
|
| 472 |
+
1. Resnet block with time embedding
|
| 473 |
+
2. Attention block
|
| 474 |
+
3. Resnet block with time embedding
|
| 475 |
+
|
| 476 |
+
in_channels: Number of channels in the input feature map.
|
| 477 |
+
out_channels: Number of channels produced by this block.
|
| 478 |
+
t_emb_dim: Dimension of the time embedding. Only use for UNet for Diffusion. In an AutoEncoder, set it to None.
|
| 479 |
+
num_heads: Number of attention heads (used if attention is enabled).
|
| 480 |
+
num_layers: How many sub-blocks to apply in sequence.
|
| 481 |
+
norm_channels: Number of groups for GroupNorm.
|
| 482 |
+
cross_attn: Whether to apply cross-attention.
|
| 483 |
+
context_dim: If performing cross-attention, provide a context_dim for extra conditioning context.
|
| 484 |
+
"""
|
| 485 |
+
|
| 486 |
+
def __init__(
|
| 487 |
+
self,
|
| 488 |
+
in_channels,
|
| 489 |
+
out_channels,
|
| 490 |
+
t_emb_dim,
|
| 491 |
+
num_heads,
|
| 492 |
+
num_layers,
|
| 493 |
+
norm_channels,
|
| 494 |
+
cross_attn=None,
|
| 495 |
+
context_dim=None,
|
| 496 |
+
):
|
| 497 |
+
super().__init__()
|
| 498 |
+
|
| 499 |
+
self.num_layers = num_layers
|
| 500 |
+
self.t_emb_dim = t_emb_dim
|
| 501 |
+
self.context_dim = context_dim
|
| 502 |
+
self.cross_attn = cross_attn
|
| 503 |
+
|
| 504 |
+
self.resnet_conv_first = nn.ModuleList(
|
| 505 |
+
[
|
| 506 |
+
nn.Sequential(
|
| 507 |
+
nn.GroupNorm(
|
| 508 |
+
norm_channels, in_channels if i == 0 else out_channels
|
| 509 |
+
), # Normalizes over channels. For the first sub-block, the in_channels=in_channels, else out_channels
|
| 510 |
+
nn.SiLU(),
|
| 511 |
+
nn.Conv2d(
|
| 512 |
+
in_channels=(in_channels if i == 0 else out_channels),
|
| 513 |
+
out_channels=out_channels,
|
| 514 |
+
kernel_size=3,
|
| 515 |
+
stride=1,
|
| 516 |
+
padding=1,
|
| 517 |
+
), # (batch_size, c, h, w) -> (batch_size, out_channels, h, w)
|
| 518 |
+
)
|
| 519 |
+
for i in range(num_layers + 1)
|
| 520 |
+
]
|
| 521 |
+
)
|
| 522 |
+
|
| 523 |
+
# Only add the time embedding for diffusion and not AutoEncoder
|
| 524 |
+
if self.t_emb_dim is not None:
|
| 525 |
+
self.t_emb_layers = nn.ModuleList(
|
| 526 |
+
[
|
| 527 |
+
nn.Sequential(
|
| 528 |
+
nn.SiLU(),
|
| 529 |
+
nn.Linear(
|
| 530 |
+
in_features=self.t_emb_dim, out_features=out_channels
|
| 531 |
+
), # (batch_size, t_emb_dim) -> (batch_size, out_channels)
|
| 532 |
+
)
|
| 533 |
+
for i in range(num_layers + 1)
|
| 534 |
+
]
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
self.resnet_conv_second = nn.ModuleList(
|
| 538 |
+
[
|
| 539 |
+
nn.Sequential(
|
| 540 |
+
nn.GroupNorm(norm_channels, out_channels),
|
| 541 |
+
nn.SiLU(),
|
| 542 |
+
nn.Conv2d(
|
| 543 |
+
in_channels=out_channels,
|
| 544 |
+
out_channels=out_channels,
|
| 545 |
+
kernel_size=3,
|
| 546 |
+
stride=1,
|
| 547 |
+
padding=1,
|
| 548 |
+
), # (batch_size, out_channels, h, w) -> (batch_size, out_channels, h, w)
|
| 549 |
+
)
|
| 550 |
+
for i in range(num_layers + 1)
|
| 551 |
+
]
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
self.residual_input_conv = nn.ModuleList(
|
| 555 |
+
[
|
| 556 |
+
nn.Conv2d(
|
| 557 |
+
in_channels=(in_channels if i == 0 else out_channels),
|
| 558 |
+
out_channels=out_channels,
|
| 559 |
+
kernel_size=1,
|
| 560 |
+
stride=1,
|
| 561 |
+
padding=0,
|
| 562 |
+
) # (batch_size, in_channels, h, w) -> (batch_size, out_channels, h, w)
|
| 563 |
+
for i in range(num_layers + 1)
|
| 564 |
+
]
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
self.attention_norms = nn.ModuleList(
|
| 568 |
+
[nn.GroupNorm(norm_channels, out_channels) for i in range(num_layers)]
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
self.attentions = nn.ModuleList(
|
| 572 |
+
[
|
| 573 |
+
nn.MultiheadAttention(
|
| 574 |
+
embed_dim=out_channels, num_heads=num_heads, batch_first=True
|
| 575 |
+
)
|
| 576 |
+
for i in range(num_layers)
|
| 577 |
+
]
|
| 578 |
+
)
|
| 579 |
+
|
| 580 |
+
# Cross attention for text conditioning
|
| 581 |
+
if self.cross_attn:
|
| 582 |
+
assert (
|
| 583 |
+
context_dim is not None
|
| 584 |
+
), "Context Dimension must be passed for cross attention"
|
| 585 |
+
|
| 586 |
+
self.cross_attention_norms = nn.ModuleList(
|
| 587 |
+
[nn.GroupNorm(norm_channels, out_channels) for i in range(num_layers)]
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
self.cross_attentions = nn.ModuleList(
|
| 591 |
+
[
|
| 592 |
+
nn.MultiheadAttention(
|
| 593 |
+
embed_dim=out_channels, num_heads=num_heads, batch_first=True
|
| 594 |
+
)
|
| 595 |
+
for i in range(num_layers)
|
| 596 |
+
]
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
self.context_proj = nn.ModuleList(
|
| 600 |
+
[
|
| 601 |
+
nn.Linear(in_features=context_dim, out_features=out_channels)
|
| 602 |
+
for i in range(num_layers)
|
| 603 |
+
]
|
| 604 |
+
)
|
| 605 |
+
|
| 606 |
+
def forward(self, x, t_emb=None, context=None):
|
| 607 |
+
out = x
|
| 608 |
+
|
| 609 |
+
# First ResNet block
|
| 610 |
+
resnet_input = out # (batch_size, c, h, w)
|
| 611 |
+
out = self.resnet_conv_first[0](out) # (batch_size, out_channels, h, w)
|
| 612 |
+
|
| 613 |
+
# Only add the time embedding for diffusion and not AutoEncoder
|
| 614 |
+
if self.t_emb_dim is not None:
|
| 615 |
+
# Add the embeddings for timesteps - (batch_size, t_emb_dim) -> (batch_size, out_channels, 1, 1)
|
| 616 |
+
out = out + self.t_emb_layers[0](t_emb).unsqueeze(dim=-1).unsqueeze(
|
| 617 |
+
dim=-1
|
| 618 |
+
) # (batch_size, out_channels, h, w)
|
| 619 |
+
|
| 620 |
+
out = self.resnet_conv_second[0](
|
| 621 |
+
out
|
| 622 |
+
) # (batch_size, out_channels, h, w) -> (batch_size, out_channels, h, w)
|
| 623 |
+
|
| 624 |
+
# Residual Connection
|
| 625 |
+
out = out + self.residual_input_conv[0](
|
| 626 |
+
resnet_input
|
| 627 |
+
) # (batch_size, out_channels, h, w)
|
| 628 |
+
|
| 629 |
+
for i in range(self.num_layers):
|
| 630 |
+
# Attention Block
|
| 631 |
+
batch_size, channels, h, w = out.shape # (batch_size, out_channels, h, w)
|
| 632 |
+
|
| 633 |
+
# Do for both Diffusion and AutoEncoder
|
| 634 |
+
in_attn = out.reshape(
|
| 635 |
+
batch_size, channels, h * w
|
| 636 |
+
) # (batch_size, out_channels, h * w)
|
| 637 |
+
in_attn = self.attention_norms[i](in_attn)
|
| 638 |
+
in_attn = in_attn.transpose(1, 2) # (batch_size, h * w, out_channels)
|
| 639 |
+
|
| 640 |
+
# Self-Attention
|
| 641 |
+
out_attn, attn_weights = self.attentions[i](in_attn, in_attn, in_attn)
|
| 642 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
| 643 |
+
|
| 644 |
+
# Skip connection
|
| 645 |
+
out = out + out_attn # (batch_size, out_channels h, w)
|
| 646 |
+
|
| 647 |
+
if self.cross_attn:
|
| 648 |
+
assert (
|
| 649 |
+
context is not None
|
| 650 |
+
), "context cannot be None if cross attention layers are used"
|
| 651 |
+
batch_size, channels, h, w = out.shape
|
| 652 |
+
|
| 653 |
+
in_attn = out.reshape(
|
| 654 |
+
batch_size, channels, h * w
|
| 655 |
+
) # (batch_size, out_channels, h * w)
|
| 656 |
+
in_attn = self.cross_attention_norms[i](in_attn)
|
| 657 |
+
in_attn = in_attn.transpose(1, 2) # (batch_size, h * w, out_channels)
|
| 658 |
+
|
| 659 |
+
assert (
|
| 660 |
+
context.shape[0] == x.shape[0]
|
| 661 |
+
and context.shape[-1] == self.context_dim
|
| 662 |
+
) # Make sure the batch_size and context_dim match with the model's parameters
|
| 663 |
+
context_proj = self.context_proj[i](
|
| 664 |
+
context
|
| 665 |
+
) # (batch_size, seq_len, context_dim) -> (batch_size, seq_len, context_dim)
|
| 666 |
+
|
| 667 |
+
# Cross-Attention
|
| 668 |
+
out_attn, attn_weights = self.cross_attentions[i](
|
| 669 |
+
in_attn, context_proj, context_proj
|
| 670 |
+
)
|
| 671 |
+
out_attn = out_attn.transpose(1, 2).reshape(
|
| 672 |
+
batch_size, channels, h, w
|
| 673 |
+
) # (batch_size, out_channels, h, w)
|
| 674 |
+
|
| 675 |
+
# Skip Connection
|
| 676 |
+
out = out + out_attn # (batch_size, out_channels h, w)
|
| 677 |
+
|
| 678 |
+
# Resnet Block
|
| 679 |
+
resnet_input = out
|
| 680 |
+
out = self.resnet_conv_first[i + 1](
|
| 681 |
+
out
|
| 682 |
+
) # (batch_size, out_channels h, w) -> (batch_size, out_channels h, w)
|
| 683 |
+
|
| 684 |
+
# Only add the time embedding for diffusion and not AutoEncoder
|
| 685 |
+
if self.t_emb_dim is not None:
|
| 686 |
+
# Add the embeddings for timesteps - (batch_size, t_emb_dim) -> (batch_size, out_channels, 1, 1)
|
| 687 |
+
out = out + self.t_emb_layers[i + 1](t_emb).unsqueeze(dim=-1).unsqueeze(
|
| 688 |
+
dim=-1
|
| 689 |
+
) # (batch_size, out_channels h, w)
|
| 690 |
+
|
| 691 |
+
out = self.resnet_conv_second[i + 1](
|
| 692 |
+
out
|
| 693 |
+
) # (batch_size, out_channels h, w) -> (batch_size, out_channels h, w)
|
| 694 |
+
|
| 695 |
+
# Residual Connection
|
| 696 |
+
out = out + self.residual_input_conv[i + 1](
|
| 697 |
+
resnet_input
|
| 698 |
+
) # (batch_size, out_channels, h, w)
|
| 699 |
+
|
| 700 |
+
return out
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
class UpBlock(nn.Module):
|
| 704 |
+
"""
|
| 705 |
+
Up conv block with attention.
|
| 706 |
+
1. Upsample
|
| 707 |
+
1. Concatenate Down block output
|
| 708 |
+
2. Resnet block with time embedding
|
| 709 |
+
3. Attention Block
|
| 710 |
+
|
| 711 |
+
in_channels: Number of channels in the input feature map.
|
| 712 |
+
out_channels: Number of channels produced by this block.
|
| 713 |
+
t_emb_dim: Dimension of the time embedding. Only use for UNet for Diffusion. In an AutoEncoder, set it to None.
|
| 714 |
+
up_sample: Whether to apply upsampling at the end.
|
| 715 |
+
num_heads: Number of attention heads (used if attention is enabled).
|
| 716 |
+
num_layers: How many sub-blocks to apply in sequence.
|
| 717 |
+
attn: Whether to apply self-attention
|
| 718 |
+
norm_channels: Number of groups for GroupNorm.
|
| 719 |
+
"""
|
| 720 |
+
|
| 721 |
+
def __init__(
|
| 722 |
+
self,
|
| 723 |
+
in_channels,
|
| 724 |
+
out_channels,
|
| 725 |
+
t_emb_dim,
|
| 726 |
+
up_sample,
|
| 727 |
+
num_heads,
|
| 728 |
+
num_layers,
|
| 729 |
+
attn,
|
| 730 |
+
norm_channels,
|
| 731 |
+
):
|
| 732 |
+
super().__init__()
|
| 733 |
+
|
| 734 |
+
self.num_layers = num_layers
|
| 735 |
+
self.up_sample = up_sample
|
| 736 |
+
self.t_emb_dim = t_emb_dim
|
| 737 |
+
self.attn = attn
|
| 738 |
+
|
| 739 |
+
# Upsample by a factor of 2
|
| 740 |
+
self.up_sample_conv = (
|
| 741 |
+
nn.ConvTranspose2d(
|
| 742 |
+
in_channels=in_channels,
|
| 743 |
+
out_channels=in_channels,
|
| 744 |
+
kernel_size=4,
|
| 745 |
+
stride=2,
|
| 746 |
+
padding=1,
|
| 747 |
+
)
|
| 748 |
+
if self.up_sample
|
| 749 |
+
else nn.Identity()
|
| 750 |
+
) # (batch_size, c, h * 2, w * 2)
|
| 751 |
+
|
| 752 |
+
self.resnet_conv_first = nn.ModuleList(
|
| 753 |
+
[
|
| 754 |
+
nn.Sequential(
|
| 755 |
+
nn.GroupNorm(
|
| 756 |
+
norm_channels, in_channels if i == 0 else out_channels
|
| 757 |
+
), # Normalizes over channels. For the first sub-block, the in_channels=in_channels, else out_channels
|
| 758 |
+
nn.SiLU(),
|
| 759 |
+
nn.Conv2d(
|
| 760 |
+
in_channels=(in_channels if i == 0 else out_channels),
|
| 761 |
+
out_channels=out_channels,
|
| 762 |
+
kernel_size=3,
|
| 763 |
+
stride=1,
|
| 764 |
+
padding=1,
|
| 765 |
+
), # (batch_size, c, h, w) -> (batch_size, out_channels, h, w)
|
| 766 |
+
)
|
| 767 |
+
for i in range(num_layers)
|
| 768 |
+
]
|
| 769 |
+
)
|
| 770 |
+
|
| 771 |
+
# Only add the time embedding for diffusion and not AutoEncoder
|
| 772 |
+
if self.t_emb_dim is not None:
|
| 773 |
+
self.t_emb_layers = nn.ModuleList(
|
| 774 |
+
[
|
| 775 |
+
nn.Sequential(
|
| 776 |
+
nn.SiLU(),
|
| 777 |
+
nn.Linear(
|
| 778 |
+
in_features=self.t_emb_dim, out_features=out_channels
|
| 779 |
+
), # (batch_size, t_emb_dim) -> (batch_size, out_channels)
|
| 780 |
+
)
|
| 781 |
+
for i in range(num_layers)
|
| 782 |
+
]
|
| 783 |
+
)
|
| 784 |
+
|
| 785 |
+
self.resnet_conv_second = nn.ModuleList(
|
| 786 |
+
[
|
| 787 |
+
nn.Sequential(
|
| 788 |
+
nn.GroupNorm(norm_channels, out_channels),
|
| 789 |
+
nn.SiLU(),
|
| 790 |
+
nn.Conv2d(
|
| 791 |
+
in_channels=out_channels,
|
| 792 |
+
out_channels=out_channels,
|
| 793 |
+
kernel_size=3,
|
| 794 |
+
stride=1,
|
| 795 |
+
padding=1,
|
| 796 |
+
), # (batch_size, out_channels, h, w) -> (batch_size, out_channels, h, w)
|
| 797 |
+
)
|
| 798 |
+
for i in range(num_layers)
|
| 799 |
+
]
|
| 800 |
+
)
|
| 801 |
+
|
| 802 |
+
self.residual_input_conv = nn.ModuleList(
|
| 803 |
+
[
|
| 804 |
+
nn.Conv2d(
|
| 805 |
+
in_channels=(in_channels if i == 0 else out_channels),
|
| 806 |
+
out_channels=out_channels,
|
| 807 |
+
kernel_size=1,
|
| 808 |
+
stride=1,
|
| 809 |
+
padding=0,
|
| 810 |
+
) # (batch_size, in_channels, h, w) -> (batch_size, out_channels, h, w)
|
| 811 |
+
for i in range(num_layers)
|
| 812 |
+
]
|
| 813 |
+
)
|
| 814 |
+
|
| 815 |
+
if self.attn:
|
| 816 |
+
self.attention_norms = nn.ModuleList(
|
| 817 |
+
[nn.GroupNorm(norm_channels, out_channels) for i in range(num_layers)]
|
| 818 |
+
)
|
| 819 |
+
|
| 820 |
+
self.attentions = nn.ModuleList(
|
| 821 |
+
[
|
| 822 |
+
nn.MultiheadAttention(
|
| 823 |
+
embed_dim=out_channels, num_heads=num_heads, batch_first=True
|
| 824 |
+
)
|
| 825 |
+
for i in range(num_layers)
|
| 826 |
+
]
|
| 827 |
+
)
|
| 828 |
+
|
| 829 |
+
def forward(self, x, out_down=None, t_emb=None):
|
| 830 |
+
# x shape: (batch_size, c, h, w)
|
| 831 |
+
|
| 832 |
+
# Upsample
|
| 833 |
+
x = self.up_sample_conv(
|
| 834 |
+
x
|
| 835 |
+
) # (batch_size, c, h, w) -> (batch_size, c, h * 2, w * 2)
|
| 836 |
+
|
| 837 |
+
# *Only do for diffusion
|
| 838 |
+
# Concatenate with the output of respective DownBlock
|
| 839 |
+
if out_down is not None:
|
| 840 |
+
x = torch.cat(
|
| 841 |
+
[x, out_down], dim=1
|
| 842 |
+
) # (batch_size, c, h * 2, w * 2) -> (batch_size, c * 2, h * 2, w * 2)
|
| 843 |
+
|
| 844 |
+
out = x # (batch_size, c, h * 2, w * 2)
|
| 845 |
+
|
| 846 |
+
for i in range(self.num_layers):
|
| 847 |
+
# Resnet block
|
| 848 |
+
resnet_input = out
|
| 849 |
+
out = self.resnet_conv_first[i](
|
| 850 |
+
out
|
| 851 |
+
) # (batch_size, in_channels, h * 2, w * 2) -> (batch_size, out_channels, h * 2, w * 2)
|
| 852 |
+
|
| 853 |
+
# Only add the time embedding for diffusion and not AutoEncoder
|
| 854 |
+
if self.t_emb_dim is not None:
|
| 855 |
+
# Add the embeddings for timesteps - (batch_size, t_emb_dim) -> (batch_size, out_channels, 1, 1)
|
| 856 |
+
out = out + self.t_emb_layers[i](t_emb).unsqueeze(dim=-1).unsqueeze(
|
| 857 |
+
dim=-1
|
| 858 |
+
) # (batch_size, out_channels, h * 2, w * 2)
|
| 859 |
+
|
| 860 |
+
out = self.resnet_conv_second[i](
|
| 861 |
+
out
|
| 862 |
+
) # (batch_size, out_channels, h * 2, w * 2) -> (batch_size, out_channels, h * 2, w * 2)
|
| 863 |
+
|
| 864 |
+
# Residual Connection
|
| 865 |
+
out = out + self.residual_input_conv[i](
|
| 866 |
+
resnet_input
|
| 867 |
+
) # (batch_size, out_channels, h * 2, w * 2)
|
| 868 |
+
|
| 869 |
+
# Only do for Diffusion and not for AutoEncoder
|
| 870 |
+
if self.attn:
|
| 871 |
+
# Attention block of UNET
|
| 872 |
+
batch_size, channels, h, w = out.shape
|
| 873 |
+
|
| 874 |
+
in_attn = out.reshape(
|
| 875 |
+
batch_size, channels, h * w
|
| 876 |
+
) # (batch_size, out_channels, h * w * 4)
|
| 877 |
+
in_attn = self.attention_norms[i](in_attn)
|
| 878 |
+
in_attn = in_attn.transpose(
|
| 879 |
+
1, 2
|
| 880 |
+
) # (batch_size, h * w * 4, out_channels)
|
| 881 |
+
|
| 882 |
+
# Self-Attention
|
| 883 |
+
out_attn, attn_weights = self.attentions[i](in_attn, in_attn, in_attn)
|
| 884 |
+
out_attn = out_attn.transpose(1, 2).reshape(
|
| 885 |
+
batch_size, channels, h, w
|
| 886 |
+
) # (batch_size, out_channels h * 2, w * 2)
|
| 887 |
+
|
| 888 |
+
# Skip connection
|
| 889 |
+
out = out + out_attn # (batch_size, out_channels h * 2, w * 2)
|
| 890 |
+
|
| 891 |
+
return out # (batch_size, out_channels h * 2, w * 2)
|
| 892 |
+
|
| 893 |
+
|
| 894 |
+
class UpBlockUNet(nn.Module):
|
| 895 |
+
"""
|
| 896 |
+
Up conv block with attention.
|
| 897 |
+
1. Upsample
|
| 898 |
+
1. Concatenate Down block output
|
| 899 |
+
2. Resnet block with time embedding
|
| 900 |
+
3. Attention Block
|
| 901 |
+
|
| 902 |
+
in_channels: Number of channels in the input feature map. (It is passed in multiplied by 2 for concatenation with DownBlock output)
|
| 903 |
+
out_channels: Number of channels produced by this block.
|
| 904 |
+
t_emb_dim: Dimension of the time embedding. Only use for UNet for Diffusion. In an AutoEncoder, set it to None.
|
| 905 |
+
up_sample: Whether to apply upsampling at the end.
|
| 906 |
+
num_heads: Number of attention heads (used if attention is enabled).
|
| 907 |
+
num_layers: How many sub-blocks to apply in sequence.
|
| 908 |
+
norm_channels: Number of groups for GroupNorm.
|
| 909 |
+
cross_attn: Whether to apply cross-attention.
|
| 910 |
+
context_dim: If performing cross-attention, provide a context_dim for extra conditioning context.
|
| 911 |
+
"""
|
| 912 |
+
|
| 913 |
+
def __init__(
|
| 914 |
+
self,
|
| 915 |
+
in_channels,
|
| 916 |
+
out_channels,
|
| 917 |
+
t_emb_dim,
|
| 918 |
+
up_sample,
|
| 919 |
+
num_heads,
|
| 920 |
+
num_layers,
|
| 921 |
+
norm_channels,
|
| 922 |
+
cross_attn=False,
|
| 923 |
+
context_dim=None,
|
| 924 |
+
):
|
| 925 |
+
super().__init__()
|
| 926 |
+
|
| 927 |
+
self.num_layers = num_layers
|
| 928 |
+
self.up_sample = up_sample
|
| 929 |
+
self.t_emb_dim = t_emb_dim
|
| 930 |
+
self.cross_attn = cross_attn
|
| 931 |
+
self.context_dim = context_dim
|
| 932 |
+
|
| 933 |
+
self.up_sample_conv = (
|
| 934 |
+
nn.ConvTranspose2d(
|
| 935 |
+
in_channels=(in_channels // 2),
|
| 936 |
+
out_channels=(in_channels // 2),
|
| 937 |
+
kernel_size=4,
|
| 938 |
+
stride=2,
|
| 939 |
+
padding=1,
|
| 940 |
+
)
|
| 941 |
+
if self.up_sample
|
| 942 |
+
else nn.Identity()
|
| 943 |
+
) # (batch_size, in_channels // 2, h * 2, w * 2)
|
| 944 |
+
|
| 945 |
+
self.resnet_conv_first = nn.ModuleList(
|
| 946 |
+
[
|
| 947 |
+
nn.Sequential(
|
| 948 |
+
nn.GroupNorm(
|
| 949 |
+
norm_channels, in_channels if i == 0 else out_channels
|
| 950 |
+
), # Normalizes over channels. For the first sub-block, the in_channels=in_channels, else out_channels
|
| 951 |
+
nn.SiLU(),
|
| 952 |
+
nn.Conv2d(
|
| 953 |
+
in_channels=(in_channels if i == 0 else out_channels),
|
| 954 |
+
out_channels=out_channels,
|
| 955 |
+
kernel_size=3,
|
| 956 |
+
stride=1,
|
| 957 |
+
padding=1,
|
| 958 |
+
), # (batch_size, in_channels, h * 2, w. * 2) -> (batch_size, out_channels, h * 2, w * 2) - Starts at in_channels and not in_channels // 2 because of concatenation
|
| 959 |
+
)
|
| 960 |
+
for i in range(num_layers)
|
| 961 |
+
]
|
| 962 |
+
)
|
| 963 |
+
|
| 964 |
+
# Only add the time embedding if needed for UNET in diffusion
|
| 965 |
+
# Do not add the time embedding in the AutoEncoder
|
| 966 |
+
if self.t_emb_dim is not None:
|
| 967 |
+
self.t_emb_layers = nn.ModuleList(
|
| 968 |
+
[
|
| 969 |
+
nn.Sequential(
|
| 970 |
+
nn.SiLU(),
|
| 971 |
+
nn.Linear(
|
| 972 |
+
in_features=self.t_emb_dim, out_features=out_channels
|
| 973 |
+
), # (batch_size, t_emb_dim) -> (batch_size, out_channels)
|
| 974 |
+
)
|
| 975 |
+
for i in range(num_layers)
|
| 976 |
+
]
|
| 977 |
+
)
|
| 978 |
+
|
| 979 |
+
self.resnet_conv_second = nn.ModuleList(
|
| 980 |
+
[
|
| 981 |
+
nn.Sequential(
|
| 982 |
+
nn.GroupNorm(norm_channels, out_channels),
|
| 983 |
+
nn.SiLU(),
|
| 984 |
+
nn.Conv2d(
|
| 985 |
+
in_channels=out_channels,
|
| 986 |
+
out_channels=out_channels,
|
| 987 |
+
kernel_size=3,
|
| 988 |
+
stride=1,
|
| 989 |
+
padding=1,
|
| 990 |
+
), # (batch_size, out_channels, h * 2, w * 2) -> (batch_size, out_channels, h * 2, w * 2)
|
| 991 |
+
)
|
| 992 |
+
for i in range(num_layers)
|
| 993 |
+
]
|
| 994 |
+
)
|
| 995 |
+
|
| 996 |
+
self.residual_input_conv = nn.ModuleList(
|
| 997 |
+
[
|
| 998 |
+
nn.Conv2d(
|
| 999 |
+
in_channels=(in_channels if i == 0 else out_channels),
|
| 1000 |
+
out_channels=out_channels,
|
| 1001 |
+
kernel_size=1,
|
| 1002 |
+
stride=1,
|
| 1003 |
+
padding=0,
|
| 1004 |
+
)
|
| 1005 |
+
for i in range(
|
| 1006 |
+
num_layers
|
| 1007 |
+
) # (batch_size, in_channels, h * 2, w * 2) -> (batch_size, out_channels, h * 2, w * 2)
|
| 1008 |
+
]
|
| 1009 |
+
)
|
| 1010 |
+
|
| 1011 |
+
self.attention_norms = nn.ModuleList(
|
| 1012 |
+
[nn.GroupNorm(norm_channels, out_channels) for i in range(num_layers)]
|
| 1013 |
+
)
|
| 1014 |
+
|
| 1015 |
+
self.attentions = nn.ModuleList(
|
| 1016 |
+
[
|
| 1017 |
+
nn.MultiheadAttention(
|
| 1018 |
+
embed_dim=out_channels, num_heads=num_heads, batch_first=True
|
| 1019 |
+
)
|
| 1020 |
+
for i in range(num_layers)
|
| 1021 |
+
]
|
| 1022 |
+
)
|
| 1023 |
+
|
| 1024 |
+
# Cross attention for text conditioning
|
| 1025 |
+
if self.cross_attn:
|
| 1026 |
+
assert (
|
| 1027 |
+
context_dim is not None
|
| 1028 |
+
), "Context Dimension must be passed for cross attention"
|
| 1029 |
+
|
| 1030 |
+
self.cross_attention_norms = nn.ModuleList(
|
| 1031 |
+
[nn.GroupNorm(norm_channels, out_channels) for i in range(num_layers)]
|
| 1032 |
+
)
|
| 1033 |
+
|
| 1034 |
+
self.cross_attentions = nn.ModuleList(
|
| 1035 |
+
[
|
| 1036 |
+
nn.MultiheadAttention(
|
| 1037 |
+
embed_dim=out_channels, num_heads=num_heads, batch_first=True
|
| 1038 |
+
)
|
| 1039 |
+
for i in range(num_layers)
|
| 1040 |
+
]
|
| 1041 |
+
)
|
| 1042 |
+
|
| 1043 |
+
self.context_proj = nn.ModuleList(
|
| 1044 |
+
[
|
| 1045 |
+
nn.Linear(in_features=context_dim, out_features=out_channels)
|
| 1046 |
+
for i in range(num_layers)
|
| 1047 |
+
]
|
| 1048 |
+
)
|
| 1049 |
+
|
| 1050 |
+
def forward(self, x, out_down=None, t_emb=None, context=None):
|
| 1051 |
+
# x shape: (batch_size, in_channels // 2, h, w)
|
| 1052 |
+
|
| 1053 |
+
# Upsample
|
| 1054 |
+
x = self.up_sample_conv(
|
| 1055 |
+
x
|
| 1056 |
+
) # (batch_size, in_channels // 2, h, w) -> (batch_size, in_channels // 2, h * 2, w * 2)
|
| 1057 |
+
|
| 1058 |
+
# Concatenate with the output of respective DownBlock
|
| 1059 |
+
if out_down is not None:
|
| 1060 |
+
x = torch.cat(
|
| 1061 |
+
[x, out_down], dim=1
|
| 1062 |
+
) # (batch_size, in_channels // 2, h * 2, w * 2) -> (batch_size, in_channels, h * 2, w * 2)
|
| 1063 |
+
|
| 1064 |
+
out = x # (batch_size, in_channels, h * 2, w * 2)
|
| 1065 |
+
for i in range(self.num_layers):
|
| 1066 |
+
# Resnet block
|
| 1067 |
+
resnet_input = out
|
| 1068 |
+
|
| 1069 |
+
out = self.resnet_conv_first[i](
|
| 1070 |
+
out
|
| 1071 |
+
) # (batch_size, in_channels, h * 2, w * 2) -> (batch_size, out_channels, h * 2, w * 2)
|
| 1072 |
+
|
| 1073 |
+
if self.t_emb_dim is not None:
|
| 1074 |
+
# Add the embeddings for timesteps - (batch_size, t_emb_dim) -> (batch_size, out_channels, 1, 1)
|
| 1075 |
+
out = out + self.t_emb_layers[i](t_emb).unsqueeze(dim=-1).unsqueeze(
|
| 1076 |
+
dim=-1
|
| 1077 |
+
) # (batch_size, out_channels, h * 2, w * 2)
|
| 1078 |
+
|
| 1079 |
+
out = self.resnet_conv_second[i](
|
| 1080 |
+
out
|
| 1081 |
+
) # (batch_size, out_channels, h * 2, w * 2) -> (batch_size, out_channels, h * 2, w * 2)
|
| 1082 |
+
|
| 1083 |
+
# Residual Connection
|
| 1084 |
+
out = out + self.residual_input_conv[i](
|
| 1085 |
+
resnet_input
|
| 1086 |
+
) # (batch_size, out_channels, h * 2, w * 2)
|
| 1087 |
+
|
| 1088 |
+
# Attention block of UNET
|
| 1089 |
+
batch_size, channels, h, w = (
|
| 1090 |
+
out.shape
|
| 1091 |
+
) # (batch_size, out_channels, h * 2, w * 2)
|
| 1092 |
+
|
| 1093 |
+
in_attn = out.reshape(
|
| 1094 |
+
batch_size, channels, h * w
|
| 1095 |
+
) # (batch_size, out_channels, h * w * 4)
|
| 1096 |
+
in_attn = self.attention_norms[i](in_attn)
|
| 1097 |
+
in_attn = in_attn.transpose(1, 2) # (batch_size, h * w * 4, out_channels)
|
| 1098 |
+
|
| 1099 |
+
# Self-Attention
|
| 1100 |
+
out_attn, attn_weights = self.attentions[i](in_attn, in_attn, in_attn)
|
| 1101 |
+
out_attn = out_attn.transpose(1, 2).reshape(
|
| 1102 |
+
batch_size, channels, h, w
|
| 1103 |
+
) # (batch_size, out_channels h * 2, w * 2)
|
| 1104 |
+
|
| 1105 |
+
# Skip connection
|
| 1106 |
+
out = out + out_attn # (batch_size, out_channels h * 2, w * 2)
|
| 1107 |
+
|
| 1108 |
+
if self.cross_attn:
|
| 1109 |
+
assert (
|
| 1110 |
+
context is not None
|
| 1111 |
+
), "context cannot be None if cross attention layers are used"
|
| 1112 |
+
batch_size, channels, h, w = out.shape
|
| 1113 |
+
|
| 1114 |
+
in_attn = out.reshape(
|
| 1115 |
+
batch_size, channels, h * w
|
| 1116 |
+
) # (batch_size, out_channels, h * w * 4)
|
| 1117 |
+
in_attn = self.cross_attention_norms[i](in_attn)
|
| 1118 |
+
in_attn = in_attn.transpose(
|
| 1119 |
+
1, 2
|
| 1120 |
+
) # (batch_size, h * w * 4, out_channels)
|
| 1121 |
+
|
| 1122 |
+
assert (
|
| 1123 |
+
len(context.shape) == 3
|
| 1124 |
+
), "Context shape does not match batch_size, _, context_dim"
|
| 1125 |
+
|
| 1126 |
+
assert (
|
| 1127 |
+
context.shape[0] == x.shape[0]
|
| 1128 |
+
and context.shape[-1] == self.context_dim
|
| 1129 |
+
), "Context shape does not match batch_size, _, context_dim" # Make sure the batch_size and context_dim match with the model's parameters
|
| 1130 |
+
context_proj = self.context_proj[i](
|
| 1131 |
+
context
|
| 1132 |
+
) # (batch_size, seq_len, context_dim) -> (batch_size, seq_len, context_dim)
|
| 1133 |
+
|
| 1134 |
+
# Cross-Attention
|
| 1135 |
+
out_attn, attn_weights = self.cross_attentions[i](
|
| 1136 |
+
in_attn, context_proj, context_proj
|
| 1137 |
+
)
|
| 1138 |
+
out_attn = out_attn.transpose(1, 2).reshape(
|
| 1139 |
+
batch_size, channels, h, w
|
| 1140 |
+
) # (batch_size, out_channels, h * 2, w * 2)
|
| 1141 |
+
|
| 1142 |
+
# Skip Connection
|
| 1143 |
+
out = out + out_attn # (batch_size, out_channels h * 2, w * 2)
|
| 1144 |
+
|
| 1145 |
+
return out # (batch_size, out_channels h * 2, w * 2)
|
| 1146 |
+
|
| 1147 |
+
|
| 1148 |
+
class VQVAE(nn.Module):
|
| 1149 |
+
def __init__(self, image_channels, model_config):
|
| 1150 |
+
super().__init__()
|
| 1151 |
+
|
| 1152 |
+
self.down_channels = model_config["down_channels"]
|
| 1153 |
+
self.mid_channels = model_config["mid_channels"]
|
| 1154 |
+
self.down_sample = model_config["down_sample"]
|
| 1155 |
+
self.num_down_layers = model_config["num_down_layers"]
|
| 1156 |
+
self.num_mid_layers = model_config["num_mid_layers"]
|
| 1157 |
+
self.num_up_layers = model_config["num_up_layers"]
|
| 1158 |
+
|
| 1159 |
+
# To disable attention in Downblock of Encoder and Upblock of Decoder
|
| 1160 |
+
self.attns = model_config["attn_down"]
|
| 1161 |
+
|
| 1162 |
+
# Latent Dimension
|
| 1163 |
+
self.z_channels = model_config[
|
| 1164 |
+
"z_channels"
|
| 1165 |
+
] # number of channels in the latent representation
|
| 1166 |
+
self.codebook_size = model_config[
|
| 1167 |
+
"codebook_size"
|
| 1168 |
+
] # number of discrete code vectors available
|
| 1169 |
+
self.norm_channels = model_config["norm_channels"]
|
| 1170 |
+
self.num_heads = model_config["num_heads"]
|
| 1171 |
+
|
| 1172 |
+
assert self.mid_channels[0] == self.down_channels[-1]
|
| 1173 |
+
assert self.mid_channels[-1] == self.down_channels[-1]
|
| 1174 |
+
assert len(self.down_sample) == len(self.down_channels) - 1
|
| 1175 |
+
assert len(self.attns) == len(self.down_channels) - 1
|
| 1176 |
+
|
| 1177 |
+
# Wherever we downsample in the encoder, use upsampling in the decoder at the corresponding location
|
| 1178 |
+
self.up_sample = list(reversed(self.down_sample))
|
| 1179 |
+
|
| 1180 |
+
# Encoder
|
| 1181 |
+
self.encoder_conv_in = nn.Conv2d(
|
| 1182 |
+
in_channels=image_channels,
|
| 1183 |
+
out_channels=self.down_channels[0],
|
| 1184 |
+
kernel_size=3,
|
| 1185 |
+
stride=1,
|
| 1186 |
+
padding=1,
|
| 1187 |
+
) # (batch_size, 3, h, w) -> (batch_size, c, h, w)
|
| 1188 |
+
|
| 1189 |
+
# Downblock + Midblock
|
| 1190 |
+
self.encoder_layers = nn.ModuleList([])
|
| 1191 |
+
for i in range(len(self.down_channels) - 1):
|
| 1192 |
+
self.encoder_layers.append(
|
| 1193 |
+
DownBlock(
|
| 1194 |
+
in_channels=self.down_channels[i],
|
| 1195 |
+
out_channels=self.down_channels[i + 1],
|
| 1196 |
+
t_emb_dim=None,
|
| 1197 |
+
down_sample=self.down_sample[i],
|
| 1198 |
+
num_heads=self.num_heads,
|
| 1199 |
+
num_layers=self.num_down_layers,
|
| 1200 |
+
attn=self.attns[i],
|
| 1201 |
+
norm_channels=self.norm_channels,
|
| 1202 |
+
)
|
| 1203 |
+
)
|
| 1204 |
+
|
| 1205 |
+
self.encoder_mids = nn.ModuleList([])
|
| 1206 |
+
for i in range(len(self.mid_channels) - 1):
|
| 1207 |
+
self.encoder_mids.append(
|
| 1208 |
+
MidBlock(
|
| 1209 |
+
in_channels=self.mid_channels[i],
|
| 1210 |
+
out_channels=self.mid_channels[i + 1],
|
| 1211 |
+
t_emb_dim=None,
|
| 1212 |
+
num_heads=self.num_heads,
|
| 1213 |
+
num_layers=self.num_mid_layers,
|
| 1214 |
+
norm_channels=self.norm_channels,
|
| 1215 |
+
)
|
| 1216 |
+
)
|
| 1217 |
+
|
| 1218 |
+
self.encoder_norm_out = nn.GroupNorm(self.norm_channels, self.down_channels[-1])
|
| 1219 |
+
|
| 1220 |
+
self.encoder_conv_out = nn.Conv2d(
|
| 1221 |
+
in_channels=self.down_channels[-1],
|
| 1222 |
+
out_channels=self.z_channels,
|
| 1223 |
+
kernel_size=3,
|
| 1224 |
+
stride=1,
|
| 1225 |
+
padding=1,
|
| 1226 |
+
) # (batch_size, z_channels, h', w')
|
| 1227 |
+
|
| 1228 |
+
# Pre Quantization Convolution
|
| 1229 |
+
self.pre_quant_conv = nn.Conv2d(
|
| 1230 |
+
in_channels=self.z_channels,
|
| 1231 |
+
out_channels=self.z_channels,
|
| 1232 |
+
kernel_size=1,
|
| 1233 |
+
stride=1,
|
| 1234 |
+
padding=0,
|
| 1235 |
+
) # (batch_size, z_channels, h', w')
|
| 1236 |
+
|
| 1237 |
+
# Codebook Vectors
|
| 1238 |
+
self.embedding = nn.Embedding(
|
| 1239 |
+
self.codebook_size, self.z_channels
|
| 1240 |
+
) # (codebook_size, z_channels)
|
| 1241 |
+
|
| 1242 |
+
# Decoder
|
| 1243 |
+
|
| 1244 |
+
# Post Quantization Convolution
|
| 1245 |
+
self.post_quant_conv = nn.Conv2d(
|
| 1246 |
+
in_channels=self.z_channels,
|
| 1247 |
+
out_channels=self.z_channels,
|
| 1248 |
+
kernel_size=1,
|
| 1249 |
+
stride=1,
|
| 1250 |
+
padding=0,
|
| 1251 |
+
) # (batch_size, z_channels, h', w')
|
| 1252 |
+
|
| 1253 |
+
self.decoder_conv_in = nn.Conv2d(
|
| 1254 |
+
in_channels=self.z_channels,
|
| 1255 |
+
out_channels=self.mid_channels[-1],
|
| 1256 |
+
kernel_size=3,
|
| 1257 |
+
stride=1,
|
| 1258 |
+
padding=1,
|
| 1259 |
+
) # (batch_size, c, h', w')
|
| 1260 |
+
|
| 1261 |
+
# Midblock + Upblock
|
| 1262 |
+
self.decoder_mids = nn.ModuleList([])
|
| 1263 |
+
for i in reversed(range(1, len(self.mid_channels))):
|
| 1264 |
+
self.decoder_mids.append(
|
| 1265 |
+
MidBlock(
|
| 1266 |
+
in_channels=self.mid_channels[i],
|
| 1267 |
+
out_channels=self.mid_channels[i - 1],
|
| 1268 |
+
t_emb_dim=None,
|
| 1269 |
+
num_heads=self.num_heads,
|
| 1270 |
+
num_layers=self.num_mid_layers,
|
| 1271 |
+
norm_channels=self.norm_channels,
|
| 1272 |
+
)
|
| 1273 |
+
)
|
| 1274 |
+
|
| 1275 |
+
self.decoder_layers = nn.ModuleList([])
|
| 1276 |
+
for i in reversed(range(1, len(self.down_channels))):
|
| 1277 |
+
self.decoder_layers.append(
|
| 1278 |
+
UpBlock(
|
| 1279 |
+
in_channels=self.down_channels[i],
|
| 1280 |
+
out_channels=self.down_channels[i - 1],
|
| 1281 |
+
t_emb_dim=None,
|
| 1282 |
+
up_sample=self.down_sample[i - 1],
|
| 1283 |
+
num_heads=self.num_heads,
|
| 1284 |
+
num_layers=self.num_up_layers,
|
| 1285 |
+
attn=self.attns[i - 1],
|
| 1286 |
+
norm_channels=self.norm_channels,
|
| 1287 |
+
)
|
| 1288 |
+
)
|
| 1289 |
+
|
| 1290 |
+
self.decoder_norm_out = nn.GroupNorm(self.norm_channels, self.down_channels[0])
|
| 1291 |
+
|
| 1292 |
+
self.decoder_conv_out = nn.Conv2d(
|
| 1293 |
+
in_channels=self.down_channels[0],
|
| 1294 |
+
out_channels=image_channels,
|
| 1295 |
+
kernel_size=3,
|
| 1296 |
+
stride=1,
|
| 1297 |
+
padding=1,
|
| 1298 |
+
) # (batch_size, c, h, w)
|
| 1299 |
+
|
| 1300 |
+
def quantize(self, x):
|
| 1301 |
+
batch_size, c, h, w = x.shape # (batch_size, z_channels, h, w)
|
| 1302 |
+
|
| 1303 |
+
x = x.permute(
|
| 1304 |
+
0, 2, 3, 1
|
| 1305 |
+
) # (batch_size, z_channels, h, w) -> (batch_size, h, w, z_channels)
|
| 1306 |
+
x = x.reshape(
|
| 1307 |
+
batch_size, -1, c
|
| 1308 |
+
) # (batch_size, h, w, z_channels) -> (batch_size, h * w, z_channels)
|
| 1309 |
+
|
| 1310 |
+
# Find the nearest codebook vector with distance between (batch_size, h * w, z_channels) and (batch_size, code_book_size, z_channels) -> (batch_size, h * w, code_book_size)
|
| 1311 |
+
dist = torch.cdist(
|
| 1312 |
+
x, self.embedding.weight.unsqueeze(dim=0).repeat((batch_size, 1, 1))
|
| 1313 |
+
) # cdist calculates the batched p-norm distance
|
| 1314 |
+
|
| 1315 |
+
# (batch_size, h * w) Get the index of the closet codebook vector
|
| 1316 |
+
min_encoding_indices = torch.argmin(dist, dim=-1)
|
| 1317 |
+
|
| 1318 |
+
# Replace the encoder output with the nearest codebook
|
| 1319 |
+
quant_out = torch.index_select(
|
| 1320 |
+
self.embedding.weight, 0, min_encoding_indices.view(-1)
|
| 1321 |
+
) # (batch_size, h * w, z_channels)
|
| 1322 |
+
|
| 1323 |
+
x = x.reshape((-1, c)) # (batch_size * h * w, z_channels)
|
| 1324 |
+
|
| 1325 |
+
# Commitment and Codebook Loss using mSE
|
| 1326 |
+
commitment_loss = torch.mean((quant_out.detach() - x) ** 2)
|
| 1327 |
+
codebook_loss = torch.mean((quant_out - x.detach()) ** 2)
|
| 1328 |
+
|
| 1329 |
+
quantize_losses = {
|
| 1330 |
+
"codebook_loss": codebook_loss,
|
| 1331 |
+
"commitment_loss": commitment_loss,
|
| 1332 |
+
}
|
| 1333 |
+
|
| 1334 |
+
# Straight through estimation
|
| 1335 |
+
quant_out = x + (quant_out - x).detach()
|
| 1336 |
+
|
| 1337 |
+
quant_out = quant_out.reshape(batch_size, h, w, c).permute(
|
| 1338 |
+
0, 3, 1, 2
|
| 1339 |
+
) # (batch_size, z_channels, h, w)
|
| 1340 |
+
min_encoding_indices = min_encoding_indices.reshape(
|
| 1341 |
+
(-1, h, w)
|
| 1342 |
+
) # (batch_size, h, w)
|
| 1343 |
+
|
| 1344 |
+
return quant_out, quantize_losses, min_encoding_indices
|
| 1345 |
+
|
| 1346 |
+
def encode(self, x):
|
| 1347 |
+
out = self.encoder_conv_in(x) # (batch_size, self.down_channels[0], h, w)
|
| 1348 |
+
|
| 1349 |
+
# (batch_size, self.down_channels[0], h, w) -> (batch_size, self.down_channels[-1], h', w')
|
| 1350 |
+
for idx, down in enumerate(self.encoder_layers):
|
| 1351 |
+
out = down(out)
|
| 1352 |
+
|
| 1353 |
+
# (batch_size, self.down_channels[-1], h', w') -> (batch_size, self.mid_channels[-1], h', w')
|
| 1354 |
+
for mid in self.encoder_mids:
|
| 1355 |
+
out = mid(out)
|
| 1356 |
+
|
| 1357 |
+
out = self.encoder_norm_out(out)
|
| 1358 |
+
out = F.silu(out)
|
| 1359 |
+
|
| 1360 |
+
out = self.encoder_conv_out(
|
| 1361 |
+
out
|
| 1362 |
+
) # (batch_size, self.mid_channels[-1], h', w') -> (batch_size, self.z_channels, h', w')
|
| 1363 |
+
out = self.pre_quant_conv(
|
| 1364 |
+
out
|
| 1365 |
+
) # (batch_size, self.z_channels, h', w') -> (batch_size, self.z_channels, h', w')
|
| 1366 |
+
|
| 1367 |
+
out, quant_losses, min_encoding_indices = self.quantize(
|
| 1368 |
+
out
|
| 1369 |
+
) # (batch_size, self.z_channels, h', w'), (codebook_loss, commitment_loss), (batch_size, h, w)
|
| 1370 |
+
return out, quant_losses
|
| 1371 |
+
|
| 1372 |
+
def decode(self, z):
|
| 1373 |
+
out = z
|
| 1374 |
+
out = self.post_quant_conv(
|
| 1375 |
+
out
|
| 1376 |
+
) # (batch_size, self.z_channels, h', w') -> (batch_size, self.z_channels, h', w')
|
| 1377 |
+
out = self.decoder_conv_in(
|
| 1378 |
+
out
|
| 1379 |
+
) # (batch_size, self.z_channels, h', w') -> (batch_size, self.mid_channels[-1], h', w')
|
| 1380 |
+
|
| 1381 |
+
# (batch_size, self.mid_channels[-1], h', w') -> (batch_size, self.down_channels[-1], h', w')
|
| 1382 |
+
for mid in self.decoder_mids:
|
| 1383 |
+
out = mid(out)
|
| 1384 |
+
|
| 1385 |
+
# (batch_size, self.down_channels[-1], h', w') -> (batch_size, self.down_channels[0], h, w)
|
| 1386 |
+
for idx, up in enumerate(self.decoder_layers):
|
| 1387 |
+
out = up(out)
|
| 1388 |
+
|
| 1389 |
+
out = self.decoder_norm_out(out)
|
| 1390 |
+
out = F.silu(out)
|
| 1391 |
+
|
| 1392 |
+
out = self.decoder_conv_out(
|
| 1393 |
+
out
|
| 1394 |
+
) # (batch_size, self.down_channels[0], h, w) -> (batch_size, c, h, w)
|
| 1395 |
+
return out
|
| 1396 |
+
|
| 1397 |
+
def forward(self, x):
|
| 1398 |
+
# x shape: (batch_size, c, h, w)
|
| 1399 |
+
|
| 1400 |
+
z, quant_losses = self.encode(
|
| 1401 |
+
x
|
| 1402 |
+
) # (batch_size, self.z_channels, h', w'), (codebook_loss, commitment_loss)
|
| 1403 |
+
out = self.decode(z) # (batch_size, c, h, w)
|
| 1404 |
+
|
| 1405 |
+
return out, z, quant_losses
|
| 1406 |
+
|
| 1407 |
+
|
| 1408 |
+
def validate_image_conditional_input(cond_input, x):
|
| 1409 |
+
assert (
|
| 1410 |
+
"image" in cond_input
|
| 1411 |
+
), "Model initialized with image conditioning but cond_input has no image information"
|
| 1412 |
+
assert (
|
| 1413 |
+
cond_input["image"].shape[0] == x.shape[0]
|
| 1414 |
+
), "Batch size mismatch of image condition and input"
|
| 1415 |
+
assert (
|
| 1416 |
+
cond_input["image"].shape[2] % x.shape[2] == 0
|
| 1417 |
+
), "Height/Width of image condition must be divisible by latent input"
|
| 1418 |
+
|
| 1419 |
+
|
| 1420 |
+
def validate_class_conditional_input(cond_input, x, num_classes):
|
| 1421 |
+
assert (
|
| 1422 |
+
"class" in cond_input
|
| 1423 |
+
), "Model initialized with class conditioning but cond_input has no class information"
|
| 1424 |
+
assert cond_input["class"].shape == (
|
| 1425 |
+
x.shape[0],
|
| 1426 |
+
num_classes,
|
| 1427 |
+
), "Shape of class condition input must match (Batch Size, )"
|
| 1428 |
+
|
| 1429 |
+
|
| 1430 |
+
def get_config_value(config, key, default_value):
|
| 1431 |
+
return config[key] if key in config else default_value
|
| 1432 |
+
|
| 1433 |
+
|
| 1434 |
+
class UNet(nn.Module):
|
| 1435 |
+
"""
|
| 1436 |
+
Unet model comprising
|
| 1437 |
+
Down blocks, Midblocks and Uplocks
|
| 1438 |
+
"""
|
| 1439 |
+
|
| 1440 |
+
def __init__(self, image_channels, model_config):
|
| 1441 |
+
super().__init__()
|
| 1442 |
+
|
| 1443 |
+
self.down_channels = model_config["down_channels"]
|
| 1444 |
+
self.mid_channels = model_config["mid_channels"]
|
| 1445 |
+
self.t_emb_dim = model_config["time_emb_dim"]
|
| 1446 |
+
self.down_sample = model_config["down_sample"]
|
| 1447 |
+
self.num_down_layers = model_config["num_down_layers"]
|
| 1448 |
+
self.num_mid_layers = model_config["num_mid_layers"]
|
| 1449 |
+
self.num_up_layers = model_config["num_up_layers"]
|
| 1450 |
+
self.attns = model_config["attn_down"]
|
| 1451 |
+
self.norm_channels = model_config["norm_channels"]
|
| 1452 |
+
self.num_heads = model_config["num_heads"]
|
| 1453 |
+
self.conv_out_channels = model_config["conv_out_channels"]
|
| 1454 |
+
|
| 1455 |
+
assert self.mid_channels[0] == self.down_channels[-1]
|
| 1456 |
+
assert self.mid_channels[-1] == self.down_channels[-2]
|
| 1457 |
+
assert len(self.down_sample) == len(self.down_channels) - 1
|
| 1458 |
+
assert len(self.attns) == len(self.down_channels) - 1
|
| 1459 |
+
|
| 1460 |
+
# Class, Mask, and Text Conditioning Config
|
| 1461 |
+
self.class_cond = False
|
| 1462 |
+
self.text_cond = False
|
| 1463 |
+
self.image_cond = False
|
| 1464 |
+
self.text_embed_dim = None
|
| 1465 |
+
self.condition_config = get_config_value(
|
| 1466 |
+
model_config, "condition_config", None
|
| 1467 |
+
) # Get the dictionary containing conditional information
|
| 1468 |
+
|
| 1469 |
+
if self.condition_config is not None:
|
| 1470 |
+
assert (
|
| 1471 |
+
"condition_types" in self.condition_config
|
| 1472 |
+
), "Condition Type not provided in model config"
|
| 1473 |
+
condition_types = self.condition_config["condition_types"]
|
| 1474 |
+
|
| 1475 |
+
# For class, text, and image, get necessary parameters
|
| 1476 |
+
if "class" in condition_types:
|
| 1477 |
+
self.class_cond = True
|
| 1478 |
+
self.num_classes = self.condition_config["class_condition_config"][
|
| 1479 |
+
"num_classes"
|
| 1480 |
+
]
|
| 1481 |
+
|
| 1482 |
+
if "text" in condition_types:
|
| 1483 |
+
self.text_cond = True
|
| 1484 |
+
self.text_embed_dim = self.condition_config["text_condition_config"][
|
| 1485 |
+
"text_embed_dim"
|
| 1486 |
+
]
|
| 1487 |
+
|
| 1488 |
+
if "image" in condition_types:
|
| 1489 |
+
self.image_cond = True
|
| 1490 |
+
self.image_cond_input_channels = self.condition_config[
|
| 1491 |
+
"image_condition_config"
|
| 1492 |
+
]["image_condition_input_channels"]
|
| 1493 |
+
self.image_cond_output_channels = self.condition_config[
|
| 1494 |
+
"image_condition_config"
|
| 1495 |
+
]["image_condition_output_channels"]
|
| 1496 |
+
|
| 1497 |
+
if self.class_cond:
|
| 1498 |
+
# For class conditioning, do not add the class embedding information for unconditional generation
|
| 1499 |
+
self.class_emb = nn.Embedding(
|
| 1500 |
+
self.num_classes, self.t_emb_dim
|
| 1501 |
+
) # (num_classes, t_emb_dim)
|
| 1502 |
+
|
| 1503 |
+
if self.image_cond:
|
| 1504 |
+
# Map the mask image to a image_cond_output_channels channel image, and concat with input across the channel dimension
|
| 1505 |
+
self.cond_conv_in = nn.Conv2d(
|
| 1506 |
+
in_channels=self.image_cond_input_channels,
|
| 1507 |
+
out_channels=self.image_cond_output_channels,
|
| 1508 |
+
kernel_size=1,
|
| 1509 |
+
stride=1,
|
| 1510 |
+
padding=0,
|
| 1511 |
+
bias=False,
|
| 1512 |
+
)
|
| 1513 |
+
|
| 1514 |
+
self.conv_in_concat = nn.Conv2d(
|
| 1515 |
+
in_channels=(image_channels + self.image_cond_output_channels),
|
| 1516 |
+
out_channels=self.down_channels[0],
|
| 1517 |
+
kernel_size=3,
|
| 1518 |
+
stride=1,
|
| 1519 |
+
padding=1,
|
| 1520 |
+
)
|
| 1521 |
+
else:
|
| 1522 |
+
self.conv_in = nn.Conv2d(
|
| 1523 |
+
in_channels=image_channels,
|
| 1524 |
+
out_channels=self.down_channels[0],
|
| 1525 |
+
kernel_size=3,
|
| 1526 |
+
stride=1,
|
| 1527 |
+
padding=1,
|
| 1528 |
+
) # (batch_size, image_channels, h, w) -> (batch_size, self.down_channels[0], h, w)
|
| 1529 |
+
|
| 1530 |
+
self.cond = self.text_cond or self.image_cond or self.class_cond
|
| 1531 |
+
|
| 1532 |
+
# Initial projection from sinusoidal time embedding
|
| 1533 |
+
self.t_proj = nn.Sequential(
|
| 1534 |
+
nn.Linear(in_features=self.t_emb_dim, out_features=self.t_emb_dim),
|
| 1535 |
+
nn.SiLU(),
|
| 1536 |
+
nn.Linear(in_features=self.t_emb_dim, out_features=self.t_emb_dim),
|
| 1537 |
+
) # (batch_size, t_emb_dim)
|
| 1538 |
+
|
| 1539 |
+
self.up_sample = list(reversed(self.down_sample))
|
| 1540 |
+
|
| 1541 |
+
self.downs = nn.ModuleList([])
|
| 1542 |
+
for i in range(len(self.down_channels) - 1):
|
| 1543 |
+
# Cross attention and Context Dim are only used for text conditioning
|
| 1544 |
+
self.downs.append(
|
| 1545 |
+
DownBlock(
|
| 1546 |
+
in_channels=self.down_channels[i],
|
| 1547 |
+
out_channels=self.down_channels[i + 1],
|
| 1548 |
+
t_emb_dim=self.t_emb_dim,
|
| 1549 |
+
down_sample=self.down_sample[i],
|
| 1550 |
+
num_heads=self.num_heads,
|
| 1551 |
+
num_layers=self.num_down_layers,
|
| 1552 |
+
attn=self.attns[i],
|
| 1553 |
+
norm_channels=self.norm_channels,
|
| 1554 |
+
cross_attn=self.text_cond,
|
| 1555 |
+
context_dim=self.text_embed_dim,
|
| 1556 |
+
)
|
| 1557 |
+
)
|
| 1558 |
+
|
| 1559 |
+
self.mids = nn.ModuleList([])
|
| 1560 |
+
for i in range(len(self.mid_channels) - 1):
|
| 1561 |
+
# Cross attention and Context Dim are only used for text conditioning
|
| 1562 |
+
self.mids.append(
|
| 1563 |
+
MidBlock(
|
| 1564 |
+
in_channels=self.mid_channels[i],
|
| 1565 |
+
out_channels=self.mid_channels[i + 1],
|
| 1566 |
+
t_emb_dim=self.t_emb_dim,
|
| 1567 |
+
num_heads=self.num_heads,
|
| 1568 |
+
num_layers=self.num_mid_layers,
|
| 1569 |
+
norm_channels=self.norm_channels,
|
| 1570 |
+
cross_attn=self.text_cond,
|
| 1571 |
+
context_dim=self.text_embed_dim,
|
| 1572 |
+
)
|
| 1573 |
+
)
|
| 1574 |
+
|
| 1575 |
+
self.ups = nn.ModuleList([])
|
| 1576 |
+
for i in reversed(range(len(self.down_channels) - 1)):
|
| 1577 |
+
# Cross attention and Context Dim are only used for text conditioning
|
| 1578 |
+
self.ups.append(
|
| 1579 |
+
UpBlockUNet(
|
| 1580 |
+
in_channels=(self.down_channels[i] * 2),
|
| 1581 |
+
out_channels=(
|
| 1582 |
+
self.down_channels[i - 1] if i != 0 else self.conv_out_channels
|
| 1583 |
+
),
|
| 1584 |
+
t_emb_dim=self.t_emb_dim,
|
| 1585 |
+
up_sample=self.down_sample[i],
|
| 1586 |
+
num_heads=self.num_heads,
|
| 1587 |
+
num_layers=self.num_up_layers,
|
| 1588 |
+
norm_channels=self.norm_channels,
|
| 1589 |
+
cross_attn=self.text_cond,
|
| 1590 |
+
context_dim=self.text_embed_dim,
|
| 1591 |
+
)
|
| 1592 |
+
)
|
| 1593 |
+
|
| 1594 |
+
self.norm_out = nn.GroupNorm(self.norm_channels, self.conv_out_channels)
|
| 1595 |
+
|
| 1596 |
+
self.conv_out = nn.Conv2d(
|
| 1597 |
+
in_channels=self.conv_out_channels,
|
| 1598 |
+
out_channels=image_channels,
|
| 1599 |
+
kernel_size=3,
|
| 1600 |
+
stride=1,
|
| 1601 |
+
padding=1,
|
| 1602 |
+
) # (batch_size, conv_out_channels, h, w) -> (batch_size, image_channels, h, w)
|
| 1603 |
+
|
| 1604 |
+
def forward(self, x, t, cond_input=None):
|
| 1605 |
+
# x shape: (batch_size, c, h, w)
|
| 1606 |
+
# cond_input is the conditioning vector
|
| 1607 |
+
# For class conditioning, it will be a one-hot vector of size # (batch_size, num_classes)
|
| 1608 |
+
|
| 1609 |
+
if self.cond:
|
| 1610 |
+
assert (
|
| 1611 |
+
cond_input is not None
|
| 1612 |
+
), "Model initialized with conditioning so cond_input cannot be None"
|
| 1613 |
+
|
| 1614 |
+
if self.image_cond:
|
| 1615 |
+
# Mask Conditioning
|
| 1616 |
+
validate_image_conditional_input(cond_input, x)
|
| 1617 |
+
image_cond = cond_input["image"]
|
| 1618 |
+
image_cond = F.interpolate(image_cond, size=x.shape[-2:])
|
| 1619 |
+
image_cond = self.cond_conv_in(image_cond)
|
| 1620 |
+
assert image_cond.shape[-2:] == x.shape[-2:]
|
| 1621 |
+
|
| 1622 |
+
x = torch.cat(
|
| 1623 |
+
[x, image_cond], dim=1
|
| 1624 |
+
) # (batch_size, image_channels + image_cond_output_channels, h, w)
|
| 1625 |
+
out = self.conv_in_concat(x) # (batch_size, down_channels[0], h, w)
|
| 1626 |
+
else:
|
| 1627 |
+
out = self.conv_in(x) # (batch_size, down_channels[0], h, w)
|
| 1628 |
+
|
| 1629 |
+
t_emb = get_time_embedding(
|
| 1630 |
+
torch.as_tensor(t).long(), self.t_emb_dim
|
| 1631 |
+
) # (batch_size, t_emb_dim)
|
| 1632 |
+
t_emb = self.t_proj(t_emb) # (batch_size, t_emb_dim)
|
| 1633 |
+
|
| 1634 |
+
# Class Conditioning
|
| 1635 |
+
if self.class_cond:
|
| 1636 |
+
validate_class_conditional_input(cond_input, x, self.num_classes)
|
| 1637 |
+
|
| 1638 |
+
# Take the matrix for class embedding vectors and matrix multiply it with the embedding matrix to get the class embedding for all images in a batch
|
| 1639 |
+
class_embed = torch.matmul(
|
| 1640 |
+
cond_input["class"].float(), self.class_emb.weight
|
| 1641 |
+
) # (batch_size, t_emb_dim)
|
| 1642 |
+
t_emb += class_embed # Add the class embedding to the time embedding
|
| 1643 |
+
|
| 1644 |
+
context_hidden_states = None
|
| 1645 |
+
|
| 1646 |
+
# Only use context hidden states in cross-attention for text conditioning
|
| 1647 |
+
if self.text_cond:
|
| 1648 |
+
assert (
|
| 1649 |
+
"text" in cond_input
|
| 1650 |
+
), "Model initialized with text conditioning but cond_input has no text information"
|
| 1651 |
+
context_hidden_states = cond_input["text"]
|
| 1652 |
+
|
| 1653 |
+
down_outs = []
|
| 1654 |
+
for idx, down in enumerate(self.downs):
|
| 1655 |
+
down_outs.append(out)
|
| 1656 |
+
out = down(
|
| 1657 |
+
out, t_emb, context_hidden_states
|
| 1658 |
+
) # Use context_hidden_states for cross-attention
|
| 1659 |
+
# out = (batch_size, c4, h / 4, w / 4)
|
| 1660 |
+
|
| 1661 |
+
for mid in self.mids:
|
| 1662 |
+
out = mid(out, t_emb, context_hidden_states)
|
| 1663 |
+
# out = (batch_size, c3, h / 4, w / 4)
|
| 1664 |
+
|
| 1665 |
+
for up in self.ups:
|
| 1666 |
+
down_out = down_outs.pop()
|
| 1667 |
+
out = up(out, down_out, t_emb, context_hidden_states)
|
| 1668 |
+
# out = (batch_size, self.conv_out_channels, h, w)
|
| 1669 |
+
|
| 1670 |
+
out = F.silu(self.norm_out(out))
|
| 1671 |
+
out = self.conv_out(
|
| 1672 |
+
out
|
| 1673 |
+
) # (batch_size, self.conv_out_channels, h, w) -> (batch_size, image_channels, h, w)
|
| 1674 |
+
|
| 1675 |
+
return out # (batch_size, image_channels, h, w)
|
| 1676 |
+
|
| 1677 |
+
|
| 1678 |
+
def sample_ddpm_inference(
|
| 1679 |
+
unet,
|
| 1680 |
+
vae,
|
| 1681 |
+
text_prompt,
|
| 1682 |
+
mask_image_pil=None,
|
| 1683 |
+
guidance_scale=1.0,
|
| 1684 |
+
device=torch.device("cpu"),
|
| 1685 |
+
):
|
| 1686 |
+
"""
|
| 1687 |
+
Given a text prompt and (optionally) an image condition (as a PIL image),
|
| 1688 |
+
sample from the diffusion model and return a generated image (PIL image).
|
| 1689 |
+
"""
|
| 1690 |
+
# Create noise scheduler
|
| 1691 |
+
scheduler = LinearNoiseScheduler(
|
| 1692 |
+
num_timesteps=diffusion_params["num_timesteps"],
|
| 1693 |
+
beta_start=diffusion_params["beta_start"],
|
| 1694 |
+
beta_end=diffusion_params["beta_end"],
|
| 1695 |
+
)
|
| 1696 |
+
# Get conditioning config from ldm_params
|
| 1697 |
+
condition_config = ldm_params.get("condition_config", None)
|
| 1698 |
+
condition_types = (
|
| 1699 |
+
condition_config.get("condition_types", [])
|
| 1700 |
+
if condition_config is not None
|
| 1701 |
+
else []
|
| 1702 |
+
)
|
| 1703 |
+
|
| 1704 |
+
# Load text tokenizer/model for conditioning
|
| 1705 |
+
text_model_type = condition_config["text_condition_config"]["text_embed_model"]
|
| 1706 |
+
text_tokenizer, text_model = get_tokenizer_and_model(text_model_type, device=device)
|
| 1707 |
+
|
| 1708 |
+
# Get empty text representation for classifier-free guidance
|
| 1709 |
+
empty_text_embed = get_text_representation([""], text_tokenizer, text_model, device)
|
| 1710 |
+
|
| 1711 |
+
# Get text representation of the input prompt
|
| 1712 |
+
text_prompt_embed = get_text_representation(
|
| 1713 |
+
[text_prompt], text_tokenizer, text_model, device
|
| 1714 |
+
)
|
| 1715 |
+
|
| 1716 |
+
# Prepare image conditioning:
|
| 1717 |
+
# If the user uploaded a mask image (should be a PIL image), convert it; otherwise, use zeros.
|
| 1718 |
+
if "image" in condition_types:
|
| 1719 |
+
if mask_image_pil is not None:
|
| 1720 |
+
mask_transform = transforms.Compose(
|
| 1721 |
+
[
|
| 1722 |
+
transforms.Resize(
|
| 1723 |
+
(
|
| 1724 |
+
ldm_params["condition_config"]["image_condition_config"][
|
| 1725 |
+
"image_condition_h"
|
| 1726 |
+
],
|
| 1727 |
+
ldm_params["condition_config"]["image_condition_config"][
|
| 1728 |
+
"image_condition_w"
|
| 1729 |
+
],
|
| 1730 |
+
)
|
| 1731 |
+
),
|
| 1732 |
+
transforms.ToTensor(),
|
| 1733 |
+
]
|
| 1734 |
+
)
|
| 1735 |
+
mask_tensor = (
|
| 1736 |
+
mask_transform(mask_image_pil).unsqueeze(0).to(device)
|
| 1737 |
+
) # (1, channels, H, W)
|
| 1738 |
+
else:
|
| 1739 |
+
# Create a zero mask with the required number of channels (e.g. 18)
|
| 1740 |
+
ic = ldm_params["condition_config"]["image_condition_config"][
|
| 1741 |
+
"image_condition_input_channels"
|
| 1742 |
+
]
|
| 1743 |
+
H = ldm_params["condition_config"]["image_condition_config"][
|
| 1744 |
+
"image_condition_h"
|
| 1745 |
+
]
|
| 1746 |
+
W = ldm_params["condition_config"]["image_condition_config"][
|
| 1747 |
+
"image_condition_w"
|
| 1748 |
+
]
|
| 1749 |
+
mask_tensor = torch.zeros((1, ic, H, W), device=device)
|
| 1750 |
+
else:
|
| 1751 |
+
mask_tensor = None
|
| 1752 |
+
|
| 1753 |
+
# Build conditioning dictionaries for classifier-free guidance:
|
| 1754 |
+
# For unconditional, we use empty text and zero mask.
|
| 1755 |
+
uncond_input = {}
|
| 1756 |
+
cond_input = {}
|
| 1757 |
+
if "text" in condition_types:
|
| 1758 |
+
uncond_input["text"] = empty_text_embed
|
| 1759 |
+
cond_input["text"] = text_prompt_embed
|
| 1760 |
+
if "image" in condition_types:
|
| 1761 |
+
# Use zeros for unconditioning, and the provided mask for conditioning.
|
| 1762 |
+
uncond_input["image"] = torch.zeros_like(mask_tensor)
|
| 1763 |
+
cond_input["image"] = mask_tensor
|
| 1764 |
+
|
| 1765 |
+
# Load the diffusion UNet (and assume it has been pretrained and saved)
|
| 1766 |
+
# unet = UNet(
|
| 1767 |
+
# image_channels=autoencoder_params["z_channels"], model_config=ldm_params
|
| 1768 |
+
# ).to(device)
|
| 1769 |
+
# ldm_checkpoint_path = os.path.join(
|
| 1770 |
+
# train_params["task_name"], train_params["ldm_ckpt_name"]
|
| 1771 |
+
# )
|
| 1772 |
+
# if os.path.exists(ldm_checkpoint_path):
|
| 1773 |
+
# checkpoint = torch.load(ldm_checkpoint_path, map_location=device)
|
| 1774 |
+
# unet.load_state_dict(checkpoint["model_state_dict"])
|
| 1775 |
+
# unet.eval()
|
| 1776 |
+
|
| 1777 |
+
# Load VQVAE (assume pretrained and saved)
|
| 1778 |
+
# vae = VQVAE(
|
| 1779 |
+
# image_channels=dataset_params["image_channels"], model_config=autoencoder_params
|
| 1780 |
+
# ).to(device)
|
| 1781 |
+
# vae_checkpoint_path = os.path.join(
|
| 1782 |
+
# train_params["task_name"], train_params["vqvae_autoencoder_ckpt_name"]
|
| 1783 |
+
# )
|
| 1784 |
+
# if os.path.exists(vae_checkpoint_path):
|
| 1785 |
+
# checkpoint = torch.load(vae_checkpoint_path, map_location=device)
|
| 1786 |
+
# vae.load_state_dict(checkpoint["model_state_dict"])
|
| 1787 |
+
# vae.eval()
|
| 1788 |
+
|
| 1789 |
+
# Determine latent shape from VQVAE: (batch, z_channels, H_lat, W_lat)
|
| 1790 |
+
# For example, if image_size is 256 and there are 3 downsamplings, H_lat = 256 // 8 = 32.
|
| 1791 |
+
latent_size = dataset_params["image_size"] // (
|
| 1792 |
+
2 ** sum(autoencoder_params["down_sample"])
|
| 1793 |
+
)
|
| 1794 |
+
batch = train_params["num_samples"]
|
| 1795 |
+
z_channels = autoencoder_params["z_channels"]
|
| 1796 |
+
|
| 1797 |
+
# Sample initial latent noise
|
| 1798 |
+
xt = torch.randn((batch, z_channels, latent_size, latent_size), device=device)
|
| 1799 |
+
|
| 1800 |
+
# Sampling loop (reverse diffusion)
|
| 1801 |
+
T = diffusion_params["num_timesteps"]
|
| 1802 |
+
for i in reversed(range(T)):
|
| 1803 |
+
t = torch.full((batch,), i, dtype=torch.long, device=device)
|
| 1804 |
+
# Get conditional noise prediction
|
| 1805 |
+
noise_pred_cond = unet(xt, t, cond_input)
|
| 1806 |
+
if guidance_scale > 1:
|
| 1807 |
+
noise_pred_uncond = unet(xt, t, uncond_input)
|
| 1808 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
| 1809 |
+
noise_pred_cond - noise_pred_uncond
|
| 1810 |
+
)
|
| 1811 |
+
else:
|
| 1812 |
+
noise_pred = noise_pred_cond
|
| 1813 |
+
xt, _ = scheduler.sample_prev_timestep(xt, noise_pred, t)
|
| 1814 |
+
|
| 1815 |
+
with torch.no_grad():
|
| 1816 |
+
generated = vae.decode(xt)
|
| 1817 |
+
|
| 1818 |
+
generated = torch.clamp(generated, -1, 1)
|
| 1819 |
+
generated = (generated + 1) / 2 # scale to [0,1]
|
| 1820 |
+
grid = make_grid(generated, nrow=1)
|
| 1821 |
+
pil_img = transforms.ToPILImage()(grid.cpu())
|
| 1822 |
+
|
| 1823 |
+
yield pil_img
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
transformers
|
| 4 |
+
gradio
|
| 5 |
+
spacy
|
| 6 |
+
datasets
|
| 7 |
+
Pillow
|