Spaces:
Running
on
Zero
Running
on
Zero
from __future__ import annotations | |
import json | |
import os | |
import random | |
from io import BytesIO | |
from typing import Type | |
import av | |
import numpy as np | |
import torch | |
try: | |
import torchaudio | |
TORCH_AUDIO_AVAILABLE = True | |
except: | |
TORCH_AUDIO_AVAILABLE = False | |
from PIL import Image as PILImage | |
from PIL.PngImagePlugin import PngInfo | |
import folder_paths | |
# used for image preview | |
from comfy.cli_args import args | |
from comfy_api.latest._io import ComfyNode, FolderType, Image, _UIOutput | |
class SavedResult(dict): | |
def __init__(self, filename: str, subfolder: str, type: FolderType): | |
super().__init__(filename=filename, subfolder=subfolder,type=type.value) | |
def filename(self) -> str: | |
return self["filename"] | |
def subfolder(self) -> str: | |
return self["subfolder"] | |
def type(self) -> FolderType: | |
return FolderType(self["type"]) | |
class SavedImages(_UIOutput): | |
"""A UI output class to represent one or more saved images, potentially animated.""" | |
def __init__(self, results: list[SavedResult], is_animated: bool = False): | |
super().__init__() | |
self.results = results | |
self.is_animated = is_animated | |
def as_dict(self) -> dict: | |
data = {"images": self.results} | |
if self.is_animated: | |
data["animated"] = (True,) | |
return data | |
class SavedAudios(_UIOutput): | |
"""UI wrapper around one or more audio files on disk (FLAC / MP3 / Opus).""" | |
def __init__(self, results: list[SavedResult]): | |
super().__init__() | |
self.results = results | |
def as_dict(self) -> dict: | |
return {"audio": self.results} | |
def _get_directory_by_folder_type(folder_type: FolderType) -> str: | |
if folder_type == FolderType.input: | |
return folder_paths.get_input_directory() | |
if folder_type == FolderType.output: | |
return folder_paths.get_output_directory() | |
return folder_paths.get_temp_directory() | |
class ImageSaveHelper: | |
"""A helper class with static methods to handle image saving and metadata.""" | |
def _convert_tensor_to_pil(image_tensor: torch.Tensor) -> PILImage.Image: | |
"""Converts a single torch tensor to a PIL Image.""" | |
return PILImage.fromarray(np.clip(255.0 * image_tensor.cpu().numpy(), 0, 255).astype(np.uint8)) | |
def _create_png_metadata(cls: Type[ComfyNode] | None) -> PngInfo | None: | |
"""Creates a PngInfo object with prompt and extra_pnginfo.""" | |
if args.disable_metadata or cls is None or not cls.hidden: | |
return None | |
metadata = PngInfo() | |
if cls.hidden.prompt: | |
metadata.add_text("prompt", json.dumps(cls.hidden.prompt)) | |
if cls.hidden.extra_pnginfo: | |
for x in cls.hidden.extra_pnginfo: | |
metadata.add_text(x, json.dumps(cls.hidden.extra_pnginfo[x])) | |
return metadata | |
def _create_animated_png_metadata(cls: Type[ComfyNode] | None) -> PngInfo | None: | |
"""Creates a PngInfo object with prompt and extra_pnginfo for animated PNGs (APNG).""" | |
if args.disable_metadata or cls is None or not cls.hidden: | |
return None | |
metadata = PngInfo() | |
if cls.hidden.prompt: | |
metadata.add( | |
b"comf", | |
"prompt".encode("latin-1", "strict") | |
+ b"\0" | |
+ json.dumps(cls.hidden.prompt).encode("latin-1", "strict"), | |
after_idat=True, | |
) | |
if cls.hidden.extra_pnginfo: | |
for x in cls.hidden.extra_pnginfo: | |
metadata.add( | |
b"comf", | |
x.encode("latin-1", "strict") | |
+ b"\0" | |
+ json.dumps(cls.hidden.extra_pnginfo[x]).encode("latin-1", "strict"), | |
after_idat=True, | |
) | |
return metadata | |
def _create_webp_metadata(pil_image: PILImage.Image, cls: Type[ComfyNode] | None) -> PILImage.Exif: | |
"""Creates EXIF metadata bytes for WebP images.""" | |
exif_data = pil_image.getexif() | |
if args.disable_metadata or cls is None or cls.hidden is None: | |
return exif_data | |
if cls.hidden.prompt is not None: | |
exif_data[0x0110] = "prompt:{}".format(json.dumps(cls.hidden.prompt)) # EXIF 0x0110 = Model | |
if cls.hidden.extra_pnginfo is not None: | |
inital_exif_tag = 0x010F # EXIF 0x010f = Make | |
for key, value in cls.hidden.extra_pnginfo.items(): | |
exif_data[inital_exif_tag] = "{}:{}".format(key, json.dumps(value)) | |
inital_exif_tag -= 1 | |
return exif_data | |
def save_images( | |
images, filename_prefix: str, folder_type: FolderType, cls: Type[ComfyNode] | None, compress_level = 4, | |
) -> list[SavedResult]: | |
"""Saves a batch of images as individual PNG files.""" | |
full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path( | |
filename_prefix, _get_directory_by_folder_type(folder_type), images[0].shape[1], images[0].shape[0] | |
) | |
results = [] | |
metadata = ImageSaveHelper._create_png_metadata(cls) | |
for batch_number, image_tensor in enumerate(images): | |
img = ImageSaveHelper._convert_tensor_to_pil(image_tensor) | |
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) | |
file = f"{filename_with_batch_num}_{counter:05}_.png" | |
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level) | |
results.append(SavedResult(file, subfolder, folder_type)) | |
counter += 1 | |
return results | |
def get_save_images_ui(images, filename_prefix: str, cls: Type[ComfyNode] | None, compress_level=4) -> SavedImages: | |
"""Saves a batch of images and returns a UI object for the node output.""" | |
return SavedImages( | |
ImageSaveHelper.save_images( | |
images, | |
filename_prefix=filename_prefix, | |
folder_type=FolderType.output, | |
cls=cls, | |
compress_level=compress_level, | |
) | |
) | |
def save_animated_png( | |
images, filename_prefix: str, folder_type: FolderType, cls: Type[ComfyNode] | None, fps: float, compress_level: int | |
) -> SavedResult: | |
"""Saves a batch of images as a single animated PNG.""" | |
full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path( | |
filename_prefix, _get_directory_by_folder_type(folder_type), images[0].shape[1], images[0].shape[0] | |
) | |
pil_images = [ImageSaveHelper._convert_tensor_to_pil(img) for img in images] | |
metadata = ImageSaveHelper._create_animated_png_metadata(cls) | |
file = f"{filename}_{counter:05}_.png" | |
save_path = os.path.join(full_output_folder, file) | |
pil_images[0].save( | |
save_path, | |
pnginfo=metadata, | |
compress_level=compress_level, | |
save_all=True, | |
duration=int(1000.0 / fps), | |
append_images=pil_images[1:], | |
) | |
return SavedResult(file, subfolder, folder_type) | |
def get_save_animated_png_ui( | |
images, filename_prefix: str, cls: Type[ComfyNode] | None, fps: float, compress_level: int | |
) -> SavedImages: | |
"""Saves an animated PNG and returns a UI object for the node output.""" | |
result = ImageSaveHelper.save_animated_png( | |
images, | |
filename_prefix=filename_prefix, | |
folder_type=FolderType.output, | |
cls=cls, | |
fps=fps, | |
compress_level=compress_level, | |
) | |
return SavedImages([result], is_animated=len(images) > 1) | |
def save_animated_webp( | |
images, | |
filename_prefix: str, | |
folder_type: FolderType, | |
cls: Type[ComfyNode] | None, | |
fps: float, | |
lossless: bool, | |
quality: int, | |
method: int, | |
) -> SavedResult: | |
"""Saves a batch of images as a single animated WebP.""" | |
full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path( | |
filename_prefix, _get_directory_by_folder_type(folder_type), images[0].shape[1], images[0].shape[0] | |
) | |
pil_images = [ImageSaveHelper._convert_tensor_to_pil(img) for img in images] | |
pil_exif = ImageSaveHelper._create_webp_metadata(pil_images[0], cls) | |
file = f"{filename}_{counter:05}_.webp" | |
pil_images[0].save( | |
os.path.join(full_output_folder, file), | |
save_all=True, | |
duration=int(1000.0 / fps), | |
append_images=pil_images[1:], | |
exif=pil_exif, | |
lossless=lossless, | |
quality=quality, | |
method=method, | |
) | |
return SavedResult(file, subfolder, folder_type) | |
def get_save_animated_webp_ui( | |
images, | |
filename_prefix: str, | |
cls: Type[ComfyNode] | None, | |
fps: float, | |
lossless: bool, | |
quality: int, | |
method: int, | |
) -> SavedImages: | |
"""Saves an animated WebP and returns a UI object for the node output.""" | |
result = ImageSaveHelper.save_animated_webp( | |
images, | |
filename_prefix=filename_prefix, | |
folder_type=FolderType.output, | |
cls=cls, | |
fps=fps, | |
lossless=lossless, | |
quality=quality, | |
method=method, | |
) | |
return SavedImages([result], is_animated=len(images) > 1) | |
class AudioSaveHelper: | |
"""A helper class with static methods to handle audio saving and metadata.""" | |
_OPUS_RATES = [8000, 12000, 16000, 24000, 48000] | |
def save_audio( | |
audio: dict, | |
filename_prefix: str, | |
folder_type: FolderType, | |
cls: Type[ComfyNode] | None, | |
format: str = "flac", | |
quality: str = "128k", | |
) -> list[SavedResult]: | |
full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path( | |
filename_prefix, _get_directory_by_folder_type(folder_type) | |
) | |
metadata = {} | |
if not args.disable_metadata and cls is not None: | |
if cls.hidden.prompt is not None: | |
metadata["prompt"] = json.dumps(cls.hidden.prompt) | |
if cls.hidden.extra_pnginfo is not None: | |
for x in cls.hidden.extra_pnginfo: | |
metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x]) | |
results = [] | |
for batch_number, waveform in enumerate(audio["waveform"].cpu()): | |
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) | |
file = f"{filename_with_batch_num}_{counter:05}_.{format}" | |
output_path = os.path.join(full_output_folder, file) | |
# Use original sample rate initially | |
sample_rate = audio["sample_rate"] | |
# Handle Opus sample rate requirements | |
if format == "opus": | |
if sample_rate > 48000: | |
sample_rate = 48000 | |
elif sample_rate not in AudioSaveHelper._OPUS_RATES: | |
# Find the next highest supported rate | |
for rate in sorted(AudioSaveHelper._OPUS_RATES): | |
if rate > sample_rate: | |
sample_rate = rate | |
break | |
if sample_rate not in AudioSaveHelper._OPUS_RATES: # Fallback if still not supported | |
sample_rate = 48000 | |
# Resample if necessary | |
if sample_rate != audio["sample_rate"]: | |
if not TORCH_AUDIO_AVAILABLE: | |
raise Exception("torchaudio is not available; cannot resample audio.") | |
waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate) | |
# Create output with specified format | |
output_buffer = BytesIO() | |
output_container = av.open(output_buffer, mode="w", format=format) | |
# Set metadata on the container | |
for key, value in metadata.items(): | |
output_container.metadata[key] = value | |
# Set up the output stream with appropriate properties | |
if format == "opus": | |
out_stream = output_container.add_stream("libopus", rate=sample_rate) | |
if quality == "64k": | |
out_stream.bit_rate = 64000 | |
elif quality == "96k": | |
out_stream.bit_rate = 96000 | |
elif quality == "128k": | |
out_stream.bit_rate = 128000 | |
elif quality == "192k": | |
out_stream.bit_rate = 192000 | |
elif quality == "320k": | |
out_stream.bit_rate = 320000 | |
elif format == "mp3": | |
out_stream = output_container.add_stream("libmp3lame", rate=sample_rate) | |
if quality == "V0": | |
# TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool | |
out_stream.codec_context.qscale = 1 | |
elif quality == "128k": | |
out_stream.bit_rate = 128000 | |
elif quality == "320k": | |
out_stream.bit_rate = 320000 | |
else: # format == "flac": | |
out_stream = output_container.add_stream("flac", rate=sample_rate) | |
frame = av.AudioFrame.from_ndarray( | |
waveform.movedim(0, 1).reshape(1, -1).float().numpy(), | |
format="flt", | |
layout="mono" if waveform.shape[0] == 1 else "stereo", | |
) | |
frame.sample_rate = sample_rate | |
frame.pts = 0 | |
output_container.mux(out_stream.encode(frame)) | |
# Flush encoder | |
output_container.mux(out_stream.encode(None)) | |
# Close containers | |
output_container.close() | |
# Write the output to file | |
output_buffer.seek(0) | |
with open(output_path, "wb") as f: | |
f.write(output_buffer.getbuffer()) | |
results.append(SavedResult(file, subfolder, folder_type)) | |
counter += 1 | |
return results | |
def get_save_audio_ui( | |
audio, filename_prefix: str, cls: Type[ComfyNode] | None, format: str = "flac", quality: str = "128k", | |
) -> SavedAudios: | |
"""Save and instantly wrap for UI.""" | |
return SavedAudios( | |
AudioSaveHelper.save_audio( | |
audio, | |
filename_prefix=filename_prefix, | |
folder_type=FolderType.output, | |
cls=cls, | |
format=format, | |
quality=quality, | |
) | |
) | |
class PreviewImage(_UIOutput): | |
def __init__(self, image: Image.Type, animated: bool = False, cls: Type[ComfyNode] = None, **kwargs): | |
self.values = ImageSaveHelper.save_images( | |
image, | |
filename_prefix="ComfyUI_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for _ in range(5)), | |
folder_type=FolderType.temp, | |
cls=cls, | |
compress_level=1, | |
) | |
self.animated = animated | |
def as_dict(self): | |
return { | |
"images": self.values, | |
"animated": (self.animated,) | |
} | |
class PreviewMask(PreviewImage): | |
def __init__(self, mask: PreviewMask.Type, animated: bool=False, cls: ComfyNode=None, **kwargs): | |
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) | |
super().__init__(preview, animated, cls, **kwargs) | |
class PreviewAudio(_UIOutput): | |
def __init__(self, audio: dict, cls: Type[ComfyNode] = None, **kwargs): | |
self.values = AudioSaveHelper.save_audio( | |
audio, | |
filename_prefix="ComfyUI_temp_" + "".join(random.choice("abcdefghijklmnopqrstuvwxyz") for _ in range(5)), | |
folder_type=FolderType.temp, | |
cls=cls, | |
format="flac", | |
quality="128k", | |
) | |
def as_dict(self) -> dict: | |
return {"audio": self.values} | |
class PreviewVideo(_UIOutput): | |
def __init__(self, values: list[SavedResult | dict], **kwargs): | |
self.values = values | |
def as_dict(self): | |
return {"images": self.values, "animated": (True,)} | |
class PreviewUI3D(_UIOutput): | |
def __init__(self, model_file, camera_info, **kwargs): | |
self.model_file = model_file | |
self.camera_info = camera_info | |
def as_dict(self): | |
return {"result": [self.model_file, self.camera_info]} | |
class PreviewText(_UIOutput): | |
def __init__(self, value: str, **kwargs): | |
self.value = value | |
def as_dict(self): | |
return {"text": (self.value,)} | |
class _UI: | |
SavedResult = SavedResult | |
SavedImages = SavedImages | |
SavedAudios = SavedAudios | |
ImageSaveHelper = ImageSaveHelper | |
AudioSaveHelper = AudioSaveHelper | |
PreviewImage = PreviewImage | |
PreviewMask = PreviewMask | |
PreviewAudio = PreviewAudio | |
PreviewVideo = PreviewVideo | |
PreviewUI3D = PreviewUI3D | |
PreviewText = PreviewText | |