File size: 35,293 Bytes
c2bcd10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
import io
from typing import TypedDict, Optional
import json
import os
import time
import re
import uuid
from enum import Enum
from inspect import cleandoc
import numpy as np
import torch
from PIL import Image
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict
from server import PromptServer
import folder_paths


from comfy_api_nodes.apis import (
    OpenAIImageGenerationRequest,
    OpenAIImageEditRequest,
    OpenAIImageGenerationResponse,
    OpenAICreateResponse,
    OpenAIResponse,
    CreateModelResponseProperties,
    Item,
    Includable,
    OutputContent,
    InputImageContent,
    Detail,
    InputTextContent,
    InputMessage,
    InputMessageContentList,
    InputContent,
    InputFileContent,
)

from comfy_api_nodes.apis.client import (
    ApiEndpoint,
    HttpMethod,
    SynchronousOperation,
    PollingOperation,
    EmptyRequest,
)

from comfy_api_nodes.apinode_utils import (
    downscale_image_tensor,
    validate_and_cast_response,
    validate_string,
    tensor_to_base64_string,
    text_filepath_to_data_uri,
)
from comfy_api_nodes.mapper_utils import model_field_to_node_input


RESPONSES_ENDPOINT = "/proxy/openai/v1/responses"
STARTING_POINT_ID_PATTERN = r"<starting_point_id:(.*)>"


class HistoryEntry(TypedDict):
    """Type definition for a single history entry in the chat."""

    prompt: str
    response: str
    response_id: str
    timestamp: float


class ChatHistory(TypedDict):
    """Type definition for the chat history dictionary."""

    __annotations__: dict[str, list[HistoryEntry]]


class SupportedOpenAIModel(str, Enum):
    o4_mini = "o4-mini"
    o1 = "o1"
    o3 = "o3"
    o1_pro = "o1-pro"
    gpt_4o = "gpt-4o"
    gpt_4_1 = "gpt-4.1"
    gpt_4_1_mini = "gpt-4.1-mini"
    gpt_4_1_nano = "gpt-4.1-nano"


class OpenAIDalle2(ComfyNodeABC):
    """

    Generates images synchronously via OpenAI's DALL·E 2 endpoint.

    """

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls) -> InputTypeDict:
        return {
            "required": {
                "prompt": (
                    IO.STRING,
                    {
                        "multiline": True,
                        "default": "",
                        "tooltip": "Text prompt for DALL·E",
                    },
                ),
            },
            "optional": {
                "seed": (
                    IO.INT,
                    {
                        "default": 0,
                        "min": 0,
                        "max": 2**31 - 1,
                        "step": 1,
                        "display": "number",
                        "control_after_generate": True,
                        "tooltip": "not implemented yet in backend",
                    },
                ),
                "size": (
                    IO.COMBO,
                    {
                        "options": ["256x256", "512x512", "1024x1024"],
                        "default": "1024x1024",
                        "tooltip": "Image size",
                    },
                ),
                "n": (
                    IO.INT,
                    {
                        "default": 1,
                        "min": 1,
                        "max": 8,
                        "step": 1,
                        "display": "number",
                        "tooltip": "How many images to generate",
                    },
                ),
                "image": (
                    IO.IMAGE,
                    {
                        "default": None,
                        "tooltip": "Optional reference image for image editing.",
                    },
                ),
                "mask": (
                    IO.MASK,
                    {
                        "default": None,
                        "tooltip": "Optional mask for inpainting (white areas will be replaced)",
                    },
                ),
            },
            "hidden": {
                "auth_token": "AUTH_TOKEN_COMFY_ORG",
                "comfy_api_key": "API_KEY_COMFY_ORG",
                "unique_id": "UNIQUE_ID",
            },
        }

    RETURN_TYPES = (IO.IMAGE,)
    FUNCTION = "api_call"
    CATEGORY = "api node/image/OpenAI"
    DESCRIPTION = cleandoc(__doc__ or "")
    API_NODE = True

    async def api_call(

        self,

        prompt,

        seed=0,

        image=None,

        mask=None,

        n=1,

        size="1024x1024",

        unique_id=None,

        **kwargs,

    ):
        validate_string(prompt, strip_whitespace=False)
        model = "dall-e-2"
        path = "/proxy/openai/images/generations"
        content_type = "application/json"
        request_class = OpenAIImageGenerationRequest
        img_binary = None

        if image is not None and mask is not None:
            path = "/proxy/openai/images/edits"
            content_type = "multipart/form-data"
            request_class = OpenAIImageEditRequest

            input_tensor = image.squeeze().cpu()
            height, width, channels = input_tensor.shape
            rgba_tensor = torch.ones(height, width, 4, device="cpu")
            rgba_tensor[:, :, :channels] = input_tensor

            if mask.shape[1:] != image.shape[1:-1]:
                raise Exception("Mask and Image must be the same size")
            rgba_tensor[:, :, 3] = 1 - mask.squeeze().cpu()

            rgba_tensor = downscale_image_tensor(rgba_tensor.unsqueeze(0)).squeeze()

            image_np = (rgba_tensor.numpy() * 255).astype(np.uint8)
            img = Image.fromarray(image_np)
            img_byte_arr = io.BytesIO()
            img.save(img_byte_arr, format="PNG")
            img_byte_arr.seek(0)
            img_binary = img_byte_arr  # .getvalue()
            img_binary.name = "image.png"
        elif image is not None or mask is not None:
            raise Exception("Dall-E 2 image editing requires an image AND a mask")

        # Build the operation
        operation = SynchronousOperation(
            endpoint=ApiEndpoint(
                path=path,
                method=HttpMethod.POST,
                request_model=request_class,
                response_model=OpenAIImageGenerationResponse,
            ),
            request=request_class(
                model=model,
                prompt=prompt,
                n=n,
                size=size,
                seed=seed,
            ),
            files=(
                {
                    "image": img_binary,
                }
                if img_binary
                else None
            ),
            content_type=content_type,
            auth_kwargs=kwargs,
        )

        response = await operation.execute()

        img_tensor = await validate_and_cast_response(response, node_id=unique_id)
        return (img_tensor,)


class OpenAIDalle3(ComfyNodeABC):
    """

    Generates images synchronously via OpenAI's DALL·E 3 endpoint.

    """

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls) -> InputTypeDict:
        return {
            "required": {
                "prompt": (
                    IO.STRING,
                    {
                        "multiline": True,
                        "default": "",
                        "tooltip": "Text prompt for DALL·E",
                    },
                ),
            },
            "optional": {
                "seed": (
                    IO.INT,
                    {
                        "default": 0,
                        "min": 0,
                        "max": 2**31 - 1,
                        "step": 1,
                        "display": "number",
                        "control_after_generate": True,
                        "tooltip": "not implemented yet in backend",
                    },
                ),
                "quality": (
                    IO.COMBO,
                    {
                        "options": ["standard", "hd"],
                        "default": "standard",
                        "tooltip": "Image quality",
                    },
                ),
                "style": (
                    IO.COMBO,
                    {
                        "options": ["natural", "vivid"],
                        "default": "natural",
                        "tooltip": "Vivid causes the model to lean towards generating hyper-real and dramatic images. Natural causes the model to produce more natural, less hyper-real looking images.",
                    },
                ),
                "size": (
                    IO.COMBO,
                    {
                        "options": ["1024x1024", "1024x1792", "1792x1024"],
                        "default": "1024x1024",
                        "tooltip": "Image size",
                    },
                ),
            },
            "hidden": {
                "auth_token": "AUTH_TOKEN_COMFY_ORG",
                "comfy_api_key": "API_KEY_COMFY_ORG",
                "unique_id": "UNIQUE_ID",
            },
        }

    RETURN_TYPES = (IO.IMAGE,)
    FUNCTION = "api_call"
    CATEGORY = "api node/image/OpenAI"
    DESCRIPTION = cleandoc(__doc__ or "")
    API_NODE = True

    async def api_call(

        self,

        prompt,

        seed=0,

        style="natural",

        quality="standard",

        size="1024x1024",

        unique_id=None,

        **kwargs,

    ):
        validate_string(prompt, strip_whitespace=False)
        model = "dall-e-3"

        # build the operation
        operation = SynchronousOperation(
            endpoint=ApiEndpoint(
                path="/proxy/openai/images/generations",
                method=HttpMethod.POST,
                request_model=OpenAIImageGenerationRequest,
                response_model=OpenAIImageGenerationResponse,
            ),
            request=OpenAIImageGenerationRequest(
                model=model,
                prompt=prompt,
                quality=quality,
                size=size,
                style=style,
                seed=seed,
            ),
            auth_kwargs=kwargs,
        )

        response = await operation.execute()

        img_tensor = await validate_and_cast_response(response, node_id=unique_id)
        return (img_tensor,)


class OpenAIGPTImage1(ComfyNodeABC):
    """

    Generates images synchronously via OpenAI's GPT Image 1 endpoint.

    """

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls) -> InputTypeDict:
        return {
            "required": {
                "prompt": (
                    IO.STRING,
                    {
                        "multiline": True,
                        "default": "",
                        "tooltip": "Text prompt for GPT Image 1",
                    },
                ),
            },
            "optional": {
                "seed": (
                    IO.INT,
                    {
                        "default": 0,
                        "min": 0,
                        "max": 2**31 - 1,
                        "step": 1,
                        "display": "number",
                        "control_after_generate": True,
                        "tooltip": "not implemented yet in backend",
                    },
                ),
                "quality": (
                    IO.COMBO,
                    {
                        "options": ["low", "medium", "high"],
                        "default": "low",
                        "tooltip": "Image quality, affects cost and generation time.",
                    },
                ),
                "background": (
                    IO.COMBO,
                    {
                        "options": ["opaque", "transparent"],
                        "default": "opaque",
                        "tooltip": "Return image with or without background",
                    },
                ),
                "size": (
                    IO.COMBO,
                    {
                        "options": ["auto", "1024x1024", "1024x1536", "1536x1024"],
                        "default": "auto",
                        "tooltip": "Image size",
                    },
                ),
                "n": (
                    IO.INT,
                    {
                        "default": 1,
                        "min": 1,
                        "max": 8,
                        "step": 1,
                        "display": "number",
                        "tooltip": "How many images to generate",
                    },
                ),
                "image": (
                    IO.IMAGE,
                    {
                        "default": None,
                        "tooltip": "Optional reference image for image editing.",
                    },
                ),
                "mask": (
                    IO.MASK,
                    {
                        "default": None,
                        "tooltip": "Optional mask for inpainting (white areas will be replaced)",
                    },
                ),
            },
            "hidden": {
                "auth_token": "AUTH_TOKEN_COMFY_ORG",
                "comfy_api_key": "API_KEY_COMFY_ORG",
                "unique_id": "UNIQUE_ID",
            },
        }

    RETURN_TYPES = (IO.IMAGE,)
    FUNCTION = "api_call"
    CATEGORY = "api node/image/OpenAI"
    DESCRIPTION = cleandoc(__doc__ or "")
    API_NODE = True

    async def api_call(

        self,

        prompt,

        seed=0,

        quality="low",

        background="opaque",

        image=None,

        mask=None,

        n=1,

        size="1024x1024",

        unique_id=None,

        **kwargs,

    ):
        validate_string(prompt, strip_whitespace=False)
        model = "gpt-image-1"
        path = "/proxy/openai/images/generations"
        content_type = "application/json"
        request_class = OpenAIImageGenerationRequest
        img_binaries = []
        mask_binary = None
        files = []

        if image is not None:
            path = "/proxy/openai/images/edits"
            request_class = OpenAIImageEditRequest
            content_type = "multipart/form-data"

            batch_size = image.shape[0]

            for i in range(batch_size):
                single_image = image[i : i + 1]
                scaled_image = downscale_image_tensor(single_image).squeeze()

                image_np = (scaled_image.numpy() * 255).astype(np.uint8)
                img = Image.fromarray(image_np)
                img_byte_arr = io.BytesIO()
                img.save(img_byte_arr, format="PNG")
                img_byte_arr.seek(0)
                img_binary = img_byte_arr
                img_binary.name = f"image_{i}.png"

                img_binaries.append(img_binary)
                if batch_size == 1:
                    files.append(("image", img_binary))
                else:
                    files.append(("image[]", img_binary))

        if mask is not None:
            if image is None:
                raise Exception("Cannot use a mask without an input image")
            if image.shape[0] != 1:
                raise Exception("Cannot use a mask with multiple image")
            if mask.shape[1:] != image.shape[1:-1]:
                raise Exception("Mask and Image must be the same size")
            batch, height, width = mask.shape
            rgba_mask = torch.zeros(height, width, 4, device="cpu")
            rgba_mask[:, :, 3] = 1 - mask.squeeze().cpu()

            scaled_mask = downscale_image_tensor(rgba_mask.unsqueeze(0)).squeeze()

            mask_np = (scaled_mask.numpy() * 255).astype(np.uint8)
            mask_img = Image.fromarray(mask_np)
            mask_img_byte_arr = io.BytesIO()
            mask_img.save(mask_img_byte_arr, format="PNG")
            mask_img_byte_arr.seek(0)
            mask_binary = mask_img_byte_arr
            mask_binary.name = "mask.png"
            files.append(("mask", mask_binary))

        # Build the operation
        operation = SynchronousOperation(
            endpoint=ApiEndpoint(
                path=path,
                method=HttpMethod.POST,
                request_model=request_class,
                response_model=OpenAIImageGenerationResponse,
            ),
            request=request_class(
                model=model,
                prompt=prompt,
                quality=quality,
                background=background,
                n=n,
                seed=seed,
                size=size,
            ),
            files=files if files else None,
            content_type=content_type,
            auth_kwargs=kwargs,
        )

        response = await operation.execute()

        img_tensor = await validate_and_cast_response(response, node_id=unique_id)
        return (img_tensor,)


class OpenAITextNode(ComfyNodeABC):
    """

    Base class for OpenAI text generation nodes.

    """

    RETURN_TYPES = (IO.STRING,)
    FUNCTION = "api_call"
    CATEGORY = "api node/text/OpenAI"
    API_NODE = True


class OpenAIChatNode(OpenAITextNode):
    """

    Node to generate text responses from an OpenAI model.

    """

    def __init__(self) -> None:
        """Initialize the chat node with a new session ID and empty history."""
        self.current_session_id: str = str(uuid.uuid4())
        self.history: dict[str, list[HistoryEntry]] = {}
        self.previous_response_id: Optional[str] = None

    @classmethod
    def INPUT_TYPES(cls) -> InputTypeDict:
        return {
            "required": {
                "prompt": (
                    IO.STRING,
                    {
                        "multiline": True,
                        "default": "",
                        "tooltip": "Text inputs to the model, used to generate a response.",
                    },
                ),
                "persist_context": (
                    IO.BOOLEAN,
                    {
                        "default": True,
                        "tooltip": "Persist chat context between calls (multi-turn conversation)",
                    },
                ),
                "model": model_field_to_node_input(
                    IO.COMBO,
                    OpenAICreateResponse,
                    "model",
                    enum_type=SupportedOpenAIModel,
                ),
            },
            "optional": {
                "images": (
                    IO.IMAGE,
                    {
                        "default": None,
                        "tooltip": "Optional image(s) to use as context for the model. To include multiple images, you can use the Batch Images node.",
                    },
                ),
                "files": (
                    "OPENAI_INPUT_FILES",
                    {
                        "default": None,
                        "tooltip": "Optional file(s) to use as context for the model. Accepts inputs from the OpenAI Chat Input Files node.",
                    },
                ),
                "advanced_options": (
                    "OPENAI_CHAT_CONFIG",
                    {
                        "default": None,
                        "tooltip": "Optional configuration for the model. Accepts inputs from the OpenAI Chat Advanced Options node.",
                    },
                ),
            },
            "hidden": {
                "auth_token": "AUTH_TOKEN_COMFY_ORG",
                "comfy_api_key": "API_KEY_COMFY_ORG",
                "unique_id": "UNIQUE_ID",
            },
        }

    DESCRIPTION = "Generate text responses from an OpenAI model."

    async def get_result_response(

        self,

        response_id: str,

        include: Optional[list[Includable]] = None,

        auth_kwargs: Optional[dict[str, str]] = None,

    ) -> OpenAIResponse:
        """

        Retrieve a model response with the given ID from the OpenAI API.



        Args:

            response_id (str): The ID of the response to retrieve.

            include (Optional[List[Includable]]): Additional fields to include

                in the response. See the `include` parameter for Response

                creation above for more information.



        """
        return await PollingOperation(
            poll_endpoint=ApiEndpoint(
                path=f"{RESPONSES_ENDPOINT}/{response_id}",
                method=HttpMethod.GET,
                request_model=EmptyRequest,
                response_model=OpenAIResponse,
                query_params={"include": include},
            ),
            completed_statuses=["completed"],
            failed_statuses=["failed"],
            status_extractor=lambda response: response.status,
            auth_kwargs=auth_kwargs,
        ).execute()

    def get_message_content_from_response(

        self, response: OpenAIResponse

    ) -> list[OutputContent]:
        """Extract message content from the API response."""
        for output in response.output:
            if output.root.type == "message":
                return output.root.content
        raise TypeError("No output message found in response")

    def get_text_from_message_content(

        self, message_content: list[OutputContent]

    ) -> str:
        """Extract text content from message content."""
        for content_item in message_content:
            if content_item.root.type == "output_text":
                return str(content_item.root.text)
        return "No text output found in response"

    def get_history_text(self, session_id: str) -> str:
        """Convert the entire history for a given session to JSON string."""
        return json.dumps(self.history[session_id])

    def display_history_on_node(self, session_id: str, node_id: str) -> None:
        """Display formatted chat history on the node UI."""
        render_spec = {
            "node_id": node_id,
            "component": "ChatHistoryWidget",
            "props": {
                "history": self.get_history_text(session_id),
            },
        }
        PromptServer.instance.send_sync(
            "display_component",
            render_spec,
        )

    def add_to_history(

        self, session_id: str, prompt: str, output_text: str, response_id: str

    ) -> None:
        """Add a new entry to the chat history."""
        if session_id not in self.history:
            self.history[session_id] = []
        self.history[session_id].append(
            {
                "prompt": prompt,
                "response": output_text,
                "response_id": response_id,
                "timestamp": time.time(),
            }
        )

    def parse_output_text_from_response(self, response: OpenAIResponse) -> str:
        """Extract text output from the API response."""
        message_contents = self.get_message_content_from_response(response)
        return self.get_text_from_message_content(message_contents)

    def generate_new_session_id(self) -> str:
        """Generate a new unique session ID."""
        return str(uuid.uuid4())

    def get_session_id(self, persist_context: bool) -> str:
        """Get the current or generate a new session ID based on context persistence."""
        return (
            self.current_session_id
            if persist_context
            else self.generate_new_session_id()
        )

    def tensor_to_input_image_content(

        self, image: torch.Tensor, detail_level: Detail = "auto"

    ) -> InputImageContent:
        """Convert a tensor to an input image content object."""
        return InputImageContent(
            detail=detail_level,
            image_url=f"data:image/png;base64,{tensor_to_base64_string(image)}",
            type="input_image",
        )

    def create_input_message_contents(

        self,

        prompt: str,

        image: Optional[torch.Tensor] = None,

        files: Optional[list[InputFileContent]] = None,

    ) -> InputMessageContentList:
        """Create a list of input message contents from prompt and optional image."""
        content_list: list[InputContent] = [
            InputTextContent(text=prompt, type="input_text"),
        ]
        if image is not None:
            for i in range(image.shape[0]):
                content_list.append(
                    self.tensor_to_input_image_content(image[i].unsqueeze(0))
                )
        if files is not None:
            content_list.extend(files)

        return InputMessageContentList(
            root=content_list,
        )

    def parse_response_id_from_prompt(self, prompt: str) -> Optional[str]:
        """Extract response ID from prompt if it exists."""
        parsed_id = re.search(STARTING_POINT_ID_PATTERN, prompt)
        return parsed_id.group(1) if parsed_id else None

    def strip_response_tag_from_prompt(self, prompt: str) -> str:
        """Remove the response ID tag from the prompt."""
        return re.sub(STARTING_POINT_ID_PATTERN, "", prompt.strip())

    def delete_history_after_response_id(

        self, new_start_id: str, session_id: str

    ) -> None:
        """Delete history entries after a specific response ID."""
        if session_id not in self.history:
            return

        new_history = []
        i = 0
        while (
            i < len(self.history[session_id])
            and self.history[session_id][i]["response_id"] != new_start_id
        ):
            new_history.append(self.history[session_id][i])
            i += 1

        # Since it's the new starting point (not the response being edited), we include it as well
        if i < len(self.history[session_id]):
            new_history.append(self.history[session_id][i])

        self.history[session_id] = new_history

    async def api_call(

        self,

        prompt: str,

        persist_context: bool,

        model: SupportedOpenAIModel,

        unique_id: Optional[str] = None,

        images: Optional[torch.Tensor] = None,

        files: Optional[list[InputFileContent]] = None,

        advanced_options: Optional[CreateModelResponseProperties] = None,

        **kwargs,

    ) -> tuple[str]:
        # Validate inputs
        validate_string(prompt, strip_whitespace=False)

        session_id = self.get_session_id(persist_context)
        response_id_override = self.parse_response_id_from_prompt(prompt)
        if response_id_override:
            is_starting_from_beginning = response_id_override == "start"
            if is_starting_from_beginning:
                self.history[session_id] = []
                previous_response_id = None
            else:
                previous_response_id = response_id_override
                self.delete_history_after_response_id(response_id_override, session_id)
            prompt = self.strip_response_tag_from_prompt(prompt)
        elif persist_context:
            previous_response_id = self.previous_response_id
        else:
            previous_response_id = None

        # Create response
        create_response = await SynchronousOperation(
            endpoint=ApiEndpoint(
                path=RESPONSES_ENDPOINT,
                method=HttpMethod.POST,
                request_model=OpenAICreateResponse,
                response_model=OpenAIResponse,
            ),
            request=OpenAICreateResponse(
                input=[
                    Item(
                        root=InputMessage(
                            content=self.create_input_message_contents(
                                prompt, images, files
                            ),
                            role="user",
                        )
                    ),
                ],
                store=True,
                stream=False,
                model=model,
                previous_response_id=previous_response_id,
                **(
                    advanced_options.model_dump(exclude_none=True)
                    if advanced_options
                    else {}
                ),
            ),
            auth_kwargs=kwargs,
        ).execute()
        response_id = create_response.id

        # Get result output
        result_response = await self.get_result_response(response_id, auth_kwargs=kwargs)
        output_text = self.parse_output_text_from_response(result_response)

        # Update history
        self.add_to_history(session_id, prompt, output_text, response_id)
        self.display_history_on_node(session_id, unique_id)
        self.previous_response_id = response_id

        return (output_text,)


class OpenAIInputFiles(ComfyNodeABC):
    """

    Loads and formats input files for OpenAI API.

    """

    @classmethod
    def INPUT_TYPES(cls) -> InputTypeDict:
        """

        For details about the supported file input types, see:

        https://platform.openai.com/docs/guides/pdf-files?api-mode=responses

        """
        input_dir = folder_paths.get_input_directory()
        input_files = [
            f
            for f in os.scandir(input_dir)
            if f.is_file()
            and (f.name.endswith(".txt") or f.name.endswith(".pdf"))
            and f.stat().st_size < 32 * 1024 * 1024
        ]
        input_files = sorted(input_files, key=lambda x: x.name)
        input_files = [f.name for f in input_files]
        return {
            "required": {
                "file": (
                    IO.COMBO,
                    {
                        "tooltip": "Input files to include as context for the model. Only accepts text (.txt) and PDF (.pdf) files for now.",
                        "options": input_files,
                        "default": input_files[0] if input_files else None,
                    },
                ),
            },
            "optional": {
                "OPENAI_INPUT_FILES": (
                    "OPENAI_INPUT_FILES",
                    {
                        "tooltip": "An optional additional file(s) to batch together with the file loaded from this node. Allows chaining of input files so that a single message can include multiple input files.",
                        "default": None,
                    },
                ),
            },
        }

    DESCRIPTION = "Loads and prepares input files (text, pdf, etc.) to include as inputs for the OpenAI Chat Node. The files will be read by the OpenAI model when generating a response. 🛈 TIP: Can be chained together with other OpenAI Input File nodes."
    RETURN_TYPES = ("OPENAI_INPUT_FILES",)
    FUNCTION = "prepare_files"
    CATEGORY = "api node/text/OpenAI"

    def create_input_file_content(self, file_path: str) -> InputFileContent:
        return InputFileContent(
            file_data=text_filepath_to_data_uri(file_path),
            filename=os.path.basename(file_path),
            type="input_file",
        )

    def prepare_files(

        self, file: str, OPENAI_INPUT_FILES: list[InputFileContent] = []

    ) -> tuple[list[InputFileContent]]:
        """

        Loads and formats input files for OpenAI API.

        """
        file_path = folder_paths.get_annotated_filepath(file)
        input_file_content = self.create_input_file_content(file_path)
        files = [input_file_content] + OPENAI_INPUT_FILES
        return (files,)


class OpenAIChatConfig(ComfyNodeABC):
    """Allows setting additional configuration for the OpenAI Chat Node."""

    RETURN_TYPES = ("OPENAI_CHAT_CONFIG",)
    FUNCTION = "configure"
    DESCRIPTION = (
        "Allows specifying advanced configuration options for the OpenAI Chat Nodes."
    )
    CATEGORY = "api node/text/OpenAI"

    @classmethod
    def INPUT_TYPES(cls) -> InputTypeDict:
        return {
            "required": {
                "truncation": (
                    IO.COMBO,
                    {
                        "options": ["auto", "disabled"],
                        "default": "auto",
                        "tooltip": "The truncation strategy to use for the model response. auto: If the context of this response and previous ones exceeds the model's context window size, the model will truncate the response to fit the context window by dropping input items in the middle of the conversation.disabled: If a model response will exceed the context window size for a model, the request will fail with a 400 error",
                    },
                ),
            },
            "optional": {
                "max_output_tokens": model_field_to_node_input(
                    IO.INT,
                    OpenAICreateResponse,
                    "max_output_tokens",
                    min=16,
                    default=4096,
                    max=16384,
                    tooltip="An upper bound for the number of tokens that can be generated for a response, including visible output tokens",
                ),
                "instructions": model_field_to_node_input(
                    IO.STRING, OpenAICreateResponse, "instructions", multiline=True
                ),
            },
        }

    def configure(

        self,

        truncation: bool,

        instructions: Optional[str] = None,

        max_output_tokens: Optional[int] = None,

    ) -> tuple[CreateModelResponseProperties]:
        """

        Configure advanced options for the OpenAI Chat Node.



        Note:

            While `top_p` and `temperature` are listed as properties in the

            spec, they are not supported for all models (e.g., o4-mini).

            They are not exposed as inputs at all to avoid having to manually

            remove depending on model choice.

        """
        return (
            CreateModelResponseProperties(
                instructions=instructions,
                truncation=truncation,
                max_output_tokens=max_output_tokens,
            ),
        )


NODE_CLASS_MAPPINGS = {
    "OpenAIDalle2": OpenAIDalle2,
    "OpenAIDalle3": OpenAIDalle3,
    "OpenAIGPTImage1": OpenAIGPTImage1,
    "OpenAIChatNode": OpenAIChatNode,
    "OpenAIInputFiles": OpenAIInputFiles,
    "OpenAIChatConfig": OpenAIChatConfig,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "OpenAIDalle2": "OpenAI DALL·E 2",
    "OpenAIDalle3": "OpenAI DALL·E 3",
    "OpenAIGPTImage1": "OpenAI GPT Image 1",
    "OpenAIChatNode": "OpenAI Chat",
    "OpenAIInputFiles": "OpenAI Chat Input Files",
    "OpenAIChatConfig": "OpenAI Chat Advanced Options",
}