Rick-29 commited on
Commit
affd330
·
verified ·
1 Parent(s): 0732279

Upload 6 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ examples/04-pizza-dad.jpeg filter=lfs diff=lfs merge=lfs -text
09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c665ce40e9988084e8be4f5f8258e2026bac659907e2d8d1944ee440a7ffdb9
3
+ size 31857210
app.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ### 1. Imports and class names setup
3
+ import gradio as gr
4
+ import torch
5
+ import os
6
+
7
+ from timeit import default_timer as timer
8
+ from model import create_effnetb2_model
9
+ from typing import Tuple, Dict
10
+ from pathlib import Path
11
+
12
+
13
+ # Setup class names
14
+ class_names = Path("class_names.txt").read_text(encoding="utf-8").splitlines()
15
+
16
+ ### 2. Model and transforms preparation
17
+ effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes = len(class_names))
18
+
19
+ # Load the saved weights
20
+ effnetb2.load_state_dict(torch.load(f="09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth",
21
+ map_location=torch.device("cpu")))
22
+
23
+ ### 3. Predict function
24
+ def predict(img) -> Tuple[Dict, float]:
25
+ # Start a timer
26
+ start_time = timer()
27
+
28
+ # Transform the input image for use with EffNetB2
29
+ img = effnetb2_transforms(img).unsqueeze(0)
30
+
31
+ # Put model into eval mode to make prediction
32
+ effnetb2.eval()
33
+ with torch.inference_mode():
34
+ # Pass transformed image through the model
35
+ pred_probs = torch.softmax(effnetb2(img), dim=1).squeeze()
36
+
37
+ # Create a prediction label and prediction probability dictionary
38
+ pred_labels_and_probs = {food: float(pred_probs[i]) for i, food in enumerate(class_names)}
39
+
40
+ # Calculate pred time
41
+ pred_time = round(timer() - start_time, 4)
42
+
43
+ # Return pred dict and pred time
44
+ return pred_labels_and_probs, pred_time
45
+
46
+ ### 4. Create the Gradio app
47
+ title = "FoodVision Big 🍕🥩🍣"
48
+ description = "An [EfficientNetB2 Feature Extractor](https://pytorch.org/vision/main/models/efficientnet.html#efficientnet_b2) computer vision model to classify 101 different kinds of food."
49
+ article = "Created at [09. Pytorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment)"
50
+
51
+ # Create example list
52
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
53
+
54
+ # Create the gradio demo
55
+ demo = gr.Interface(fn=predict,
56
+ inputs=gr.Image(type="pil"),
57
+ outputs=[gr.Label(num_top_classes=3, label="Predictions"),
58
+ gr.Number(label="Prediction time (s)")],
59
+ examples=example_list,
60
+ title=title,
61
+ description=description,
62
+ article=article)
63
+
64
+ # Launch the demo
65
+ demo.launch()
66
+ # demo.launch(debug=False, # Print errors locally?
67
+ # share=False) # generate a publically available URL
class_names.txt ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apple_pie
2
+ baby_back_ribs
3
+ baklava
4
+ beef_carpaccio
5
+ beef_tartare
6
+ beet_salad
7
+ beignets
8
+ bibimbap
9
+ bread_pudding
10
+ breakfast_burrito
11
+ bruschetta
12
+ caesar_salad
13
+ cannoli
14
+ caprese_salad
15
+ carrot_cake
16
+ ceviche
17
+ cheese_plate
18
+ cheesecake
19
+ chicken_curry
20
+ chicken_quesadilla
21
+ chicken_wings
22
+ chocolate_cake
23
+ chocolate_mousse
24
+ churros
25
+ clam_chowder
26
+ club_sandwich
27
+ crab_cakes
28
+ creme_brulee
29
+ croque_madame
30
+ cup_cakes
31
+ deviled_eggs
32
+ donuts
33
+ dumplings
34
+ edamame
35
+ eggs_benedict
36
+ escargots
37
+ falafel
38
+ filet_mignon
39
+ fish_and_chips
40
+ foie_gras
41
+ french_fries
42
+ french_onion_soup
43
+ french_toast
44
+ fried_calamari
45
+ fried_rice
46
+ frozen_yogurt
47
+ garlic_bread
48
+ gnocchi
49
+ greek_salad
50
+ grilled_cheese_sandwich
51
+ grilled_salmon
52
+ guacamole
53
+ gyoza
54
+ hamburger
55
+ hot_and_sour_soup
56
+ hot_dog
57
+ huevos_rancheros
58
+ hummus
59
+ ice_cream
60
+ lasagna
61
+ lobster_bisque
62
+ lobster_roll_sandwich
63
+ macaroni_and_cheese
64
+ macarons
65
+ miso_soup
66
+ mussels
67
+ nachos
68
+ omelette
69
+ onion_rings
70
+ oysters
71
+ pad_thai
72
+ paella
73
+ pancakes
74
+ panna_cotta
75
+ peking_duck
76
+ pho
77
+ pizza
78
+ pork_chop
79
+ poutine
80
+ prime_rib
81
+ pulled_pork_sandwich
82
+ ramen
83
+ ravioli
84
+ red_velvet_cake
85
+ risotto
86
+ samosa
87
+ sashimi
88
+ scallops
89
+ seaweed_salad
90
+ shrimp_and_grits
91
+ spaghetti_bolognese
92
+ spaghetti_carbonara
93
+ spring_rolls
94
+ steak
95
+ strawberry_shortcake
96
+ sushi
97
+ tacos
98
+ takoyaki
99
+ tiramisu
100
+ tuna_tartare
101
+ waffles
examples/04-pizza-dad.jpeg ADDED

Git LFS Details

  • SHA256: 0f00389758009e8430ca17c9a21ebb4564c6945e0c91c58cf058e6a93d267dc8
  • Pointer size: 132 Bytes
  • Size of remote file: 2.87 MB
model.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torchvision
4
+
5
+ from torch import nn
6
+
7
+ def create_effnetb2_model(num_classes: int = 3,
8
+ seed: int = 42):
9
+ # 1, 2, 3 Create EffNetB2 pretrained weights, transforms and model
10
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
11
+ transforms = weights.transforms()
12
+ model = torchvision.models.efficientnet_b2(weights=weights)
13
+
14
+ # 4. Freeze all layers in the base model
15
+ for param in model.parameters():
16
+ param.requires_grad = False
17
+
18
+ # 5. Change classifier head with random seed for reproducibility
19
+ torch.manual_seed(seed)
20
+ model.classifier = nn.Sequential(
21
+ nn.Dropout(p= .3, inplace=True),
22
+ nn.Linear(in_features=1408, out_features=num_classes, bias=True)
23
+ )
24
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==2.1.0
2
+ torchvision==0.16.0
3
+ gradio==3.41.0