import gradio as gr import torch import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load model & tokenizer from the Space model = AutoModelForSequenceClassification.from_pretrained(".") tokenizer = AutoTokenizer.from_pretrained(".") category_mapping = { 0: "Q/E", 1: "DA", 2: "V", 3: "DM", 4: "P", 5: "DS", 6: "EAT", 7: "AM", 8: "Other", 9: "TSC" } def predict(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=512) with torch.no_grad(): logits = model(inputs["input_ids"], inputs["attention_mask"]) probs = torch.softmax(logits, dim=1).numpy() pred_class = int(np.argmax(probs)) category_name = category_mapping.get(pred_class, "Unknown") return f"Predicted Category: {category_name} (Code: {pred_class})" iface = gr.Interface(fn=predict, inputs="text", outputs="text") iface.launch()