Spaces:
Sleeping
Sleeping
modified
Browse files
app.py
CHANGED
@@ -6,9 +6,10 @@ import base64
|
|
6 |
from io import BytesIO
|
7 |
import os
|
8 |
import logging
|
|
|
9 |
|
10 |
-
#
|
11 |
-
logger = logging.getLogger(
|
12 |
logger.setLevel(logging.DEBUG)
|
13 |
console_handler = logging.StreamHandler()
|
14 |
file_handler = logging.FileHandler('chatbot_log.log')
|
@@ -19,86 +20,93 @@ logger.addHandler(console_handler)
|
|
19 |
logger.addHandler(file_handler)
|
20 |
|
21 |
# Initialize Groq Client
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
# Function to encode
|
25 |
def encode_image(uploaded_image):
|
26 |
try:
|
|
|
|
|
27 |
logger.debug("Encoding image...")
|
28 |
buffered = BytesIO()
|
29 |
-
uploaded_image.save(buffered, format="PNG")
|
30 |
-
logger.debug("Image encoding complete.")
|
31 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
32 |
except Exception as e:
|
33 |
logger.error(f"Error encoding image: {e}")
|
34 |
raise
|
35 |
|
36 |
-
# Function to handle
|
37 |
def customLLMBot(user_input, uploaded_image, chat_history):
|
38 |
try:
|
39 |
-
|
|
|
|
|
40 |
|
41 |
# Append user input to the chat history
|
42 |
chat_history.append(("User", user_input))
|
43 |
|
|
|
44 |
if uploaded_image is not None:
|
45 |
-
# Encode the image to base64
|
46 |
base64_image = encode_image(uploaded_image)
|
|
|
47 |
|
48 |
-
# Log the image size and type
|
49 |
-
logger.debug(f"Image received, size: {len(base64_image)} bytes")
|
50 |
-
|
51 |
-
# Create a message specifically for image prompts
|
52 |
messages = [
|
53 |
{
|
54 |
"role": "user",
|
55 |
"content": [
|
56 |
{"type": "text", "text": "What's in this image?"},
|
57 |
-
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
|
|
|
58 |
}
|
59 |
]
|
60 |
-
|
61 |
-
logger.info("Sending image to Groq API for processing...")
|
62 |
-
# Send the image message to the Groq API
|
63 |
response = client.chat.completions.create(
|
64 |
model="llama-3.2-11b-vision-preview",
|
65 |
messages=messages,
|
66 |
)
|
67 |
-
logger.info("Image processed successfully.")
|
68 |
else:
|
69 |
# Process text input
|
70 |
-
logger.info("Processing text input...")
|
71 |
messages = [
|
72 |
{"role": "system", "content": "You are Dr. HealthBuddy, a professional virtual doctor chatbot."},
|
73 |
{"role": "user", "content": user_input},
|
74 |
]
|
|
|
75 |
response = client.chat.completions.create(
|
76 |
model="llama-3.2-11b-vision-preview",
|
77 |
messages=messages,
|
78 |
)
|
79 |
-
logger.info("Text processed successfully.")
|
80 |
|
81 |
-
# Extract
|
82 |
LLM_reply = response.choices[0].message.content
|
83 |
logger.debug(f"LLM reply: {LLM_reply}")
|
84 |
-
|
85 |
-
# Append the bot's response to the chat history
|
86 |
chat_history.append(("Bot", LLM_reply))
|
87 |
|
88 |
-
# Generate audio
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
93 |
|
94 |
-
# Return
|
95 |
return [(entry[0], entry[1]) for entry in chat_history], audio_file
|
96 |
|
97 |
except Exception as e:
|
98 |
-
|
99 |
-
logger.error(f"Error in customLLMBot function: {e}")
|
100 |
return [("User", f"An error occurred: {e}")], None
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
# Gradio Interface
|
104 |
def chatbot_ui():
|
@@ -153,6 +161,5 @@ def chatbot_ui():
|
|
153 |
|
154 |
return demo
|
155 |
|
156 |
-
|
157 |
# Launch the interface
|
158 |
-
chatbot_ui().launch(server_name="0.0.0.0", server_port=7860)
|
|
|
6 |
from io import BytesIO
|
7 |
import os
|
8 |
import logging
|
9 |
+
import tempfile
|
10 |
|
11 |
+
# Logging Setup
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
logger.setLevel(logging.DEBUG)
|
14 |
console_handler = logging.StreamHandler()
|
15 |
file_handler = logging.FileHandler('chatbot_log.log')
|
|
|
20 |
logger.addHandler(file_handler)
|
21 |
|
22 |
# Initialize Groq Client
|
23 |
+
api_key = os.getenv("GROQ_API_KEY_2")
|
24 |
+
if not api_key:
|
25 |
+
logger.error("GROQ_API_KEY_2 environment variable is not set. Exiting...")
|
26 |
+
raise EnvironmentError("Missing GROQ_API_KEY_2 environment variable.")
|
27 |
+
client = Groq(api_key=api_key)
|
28 |
|
29 |
+
# Function to encode image
|
30 |
def encode_image(uploaded_image):
|
31 |
try:
|
32 |
+
if not uploaded_image:
|
33 |
+
raise ValueError("No image provided.")
|
34 |
logger.debug("Encoding image...")
|
35 |
buffered = BytesIO()
|
36 |
+
uploaded_image.save(buffered, format="PNG")
|
|
|
37 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
38 |
except Exception as e:
|
39 |
logger.error(f"Error encoding image: {e}")
|
40 |
raise
|
41 |
|
42 |
+
# Function to handle user input
|
43 |
def customLLMBot(user_input, uploaded_image, chat_history):
|
44 |
try:
|
45 |
+
# Check for valid inputs
|
46 |
+
if not user_input.strip() and uploaded_image is None:
|
47 |
+
raise ValueError("Either text input or an image is required.")
|
48 |
|
49 |
# Append user input to the chat history
|
50 |
chat_history.append(("User", user_input))
|
51 |
|
52 |
+
# Process image if provided
|
53 |
if uploaded_image is not None:
|
|
|
54 |
base64_image = encode_image(uploaded_image)
|
55 |
+
logger.debug(f"Encoded image size: {len(base64_image)} bytes")
|
56 |
|
|
|
|
|
|
|
|
|
57 |
messages = [
|
58 |
{
|
59 |
"role": "user",
|
60 |
"content": [
|
61 |
{"type": "text", "text": "What's in this image?"},
|
62 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
|
63 |
+
]
|
64 |
}
|
65 |
]
|
66 |
+
logger.info("Sending image to Groq API...")
|
|
|
|
|
67 |
response = client.chat.completions.create(
|
68 |
model="llama-3.2-11b-vision-preview",
|
69 |
messages=messages,
|
70 |
)
|
|
|
71 |
else:
|
72 |
# Process text input
|
|
|
73 |
messages = [
|
74 |
{"role": "system", "content": "You are Dr. HealthBuddy, a professional virtual doctor chatbot."},
|
75 |
{"role": "user", "content": user_input},
|
76 |
]
|
77 |
+
logger.info("Sending text to Groq API...")
|
78 |
response = client.chat.completions.create(
|
79 |
model="llama-3.2-11b-vision-preview",
|
80 |
messages=messages,
|
81 |
)
|
|
|
82 |
|
83 |
+
# Extract response
|
84 |
LLM_reply = response.choices[0].message.content
|
85 |
logger.debug(f"LLM reply: {LLM_reply}")
|
|
|
|
|
86 |
chat_history.append(("Bot", LLM_reply))
|
87 |
|
88 |
+
# Generate audio response
|
89 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_audio:
|
90 |
+
tts = gTTS(LLM_reply, lang='en')
|
91 |
+
tts.save(tmp_audio.name)
|
92 |
+
audio_file = tmp_audio.name
|
93 |
+
logger.info(f"Audio response saved: {audio_file}")
|
94 |
|
95 |
+
# Return chat history and audio file
|
96 |
return [(entry[0], entry[1]) for entry in chat_history], audio_file
|
97 |
|
98 |
except Exception as e:
|
99 |
+
logger.error(f"Error in customLLMBot: {e}")
|
|
|
100 |
return [("User", f"An error occurred: {e}")], None
|
101 |
|
102 |
+
# Cleanup Function for Audio
|
103 |
+
def cleanup_audio(audio_file):
|
104 |
+
try:
|
105 |
+
if os.path.exists(audio_file):
|
106 |
+
os.remove(audio_file)
|
107 |
+
logger.info(f"Cleaned up audio file: {audio_file}")
|
108 |
+
except Exception as e:
|
109 |
+
logger.warning(f"Failed to delete audio file {audio_file}: {e}")
|
110 |
|
111 |
# Gradio Interface
|
112 |
def chatbot_ui():
|
|
|
161 |
|
162 |
return demo
|
163 |
|
|
|
164 |
# Launch the interface
|
165 |
+
chatbot_ui().launch(server_name="0.0.0.0", server_port=7860)
|