Spaces:
Sleeping
Sleeping
File size: 12,107 Bytes
17593c4 173e2fe 1ec0b16 d897c87 78b8ee2 d897c87 b410607 17593c4 fbd8044 b410607 c6a3095 17593c4 d32256a 27eeeac d897c87 fbd8044 173e2fe 17593c4 402b569 17593c4 b9f6329 b410607 17593c4 b410607 17593c4 b410607 17593c4 b410607 17593c4 b410607 fa529e8 59b7150 d897c87 b410607 d32256a d897c87 fa529e8 173e2fe b410607 fbd8044 0f110d5 b410607 173e2fe b410607 17593c4 b410607 17593c4 b410607 17593c4 b410607 fbd8044 b410607 173e2fe b410607 3aa9f69 b410607 17593c4 b410607 d897c87 4dc0555 1b0a98b 3aa9f69 17593c4 98205e6 17593c4 1c66968 17593c4 5bff428 d897c87 17593c4 d897c87 17593c4 b410607 17593c4 b410607 17593c4 b410607 17593c4 b410607 17593c4 b410607 17593c4 98205e6 173e2fe 98205e6 b410607 17593c4 b410607 d897c87 17593c4 d897c87 98205e6 b410607 caff306 17593c4 d897c87 98205e6 b410607 b36b54e 17593c4 1b4e41d 98205e6 1b4e41d 98205e6 1b4e41d b1e86a8 17593c4 b410607 17593c4 b410607 17593c4 b410607 1ec0b16 b1186d2 b410607 17593c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
# Import necessary libraries
from groq import Groq
import gradio as gr
from gtts import gTTS
import uuid
import base64
from io import BytesIO
import os
import logging
import spacy
from transformers import pipeline
import torch
import cv2
import numpy as np
from torchvision import transforms
import pathlib
# Pathlib adjustment for Windows compatibility
temp = pathlib.PosixPath
pathlib.PosixPath = pathlib.WindowsPath
# Set up logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
console_handler = logging.StreamHandler()
file_handler = logging.FileHandler('chatbot_log.log')
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
file_handler.setFormatter(formatter)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
# Initialize Groq Client
client = Groq(api_key=os.getenv("GROQ_API_KEY_2"))
# Initialize Groq Client
#client = Groq(api_key="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")
# Initialize spaCy NLP model for named entity recognition (NER)
import spacy
# Download the model if it's not already installed
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
print("Downloading 'en_core_web_sm' model...")
import os
os.system("python -m spacy download en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
# Your code continues here
print("Model loaded successfully!")
# Initialize sentiment analysis model using Hugging Face
sentiment_analyzer = pipeline("sentiment-analysis")
import torch
import os
def load_yolov5_model():
# Load model from Hugging Face Hub or local path
model = torch.hub.load(
'ultralytics/yolov5', # Use the official YOLOv5 repo
'custom',
path='models/best.pt', # Relative path to the model file
source='local' # Change to 'github' if loading from the official repo
)
return model
# Example usage
if __name__ == "__main__":
model = load_yolov5_model()
print("Model loaded successfully!")
# Load pre-trained YOLOv5 model
# def load_yolov5_model():
# model = torch.hub.load(
# r'C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\yolov5',
# 'custom',
# path=r"C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\models\best.pt",
# source="local"
# )
# model.eval()
# return model
model = load_yolov5_model()
# Function to preprocess user input for better NLP understanding
def preprocess_input(user_input):
user_input = user_input.strip().lower()
return user_input
# Function for sentiment analysis (optional)
def analyze_sentiment(user_input):
result = sentiment_analyzer(user_input)
return result[0]['label']
# Function to extract medical entities from input using NER
symptoms = [
"fever", "cough", "headache", "nausea", "pain", "fatigue", "dizziness",
"shortness of breath", "sore throat", "runny nose", "congestion", "diarrhea",
"vomiting", "chills", "sweating", "loss of appetite", "insomnia",
"itching", "rash", "swelling", "bleeding", "burning sensation",
"weakness", "tingling", "numbness", "muscle cramps", "joint pain",
"blurred vision", "double vision", "dry eyes", "sensitivity to light",
"difficulty breathing", "palpitations", "chest pain", "back pain",
"stomach ache", "abdominal pain", "weight loss", "weight gain",
"frequent urination", "difficulty urinating", "anxiety", "depression",
"irritability", "confusion", "memory loss", "bruising"
]
diseases = [
"diabetes", "cancer", "asthma", "flu", "pneumonia", "hypertension",
"arthritis", "bronchitis", "migraine", "stroke", "heart attack",
"coronary artery disease", "tuberculosis", "malaria", "dengue",
"hepatitis", "anemia", "thyroid disease", "eczema", "psoriasis",
"osteoporosis", "parkinson's", "alzheimer's", "depression",
"anxiety disorder", "schizophrenia", "epilepsy", "bipolar disorder",
"chronic kidney disease", "liver cirrhosis", "HIV", "AIDS",
"covid-19", "cholera", "smallpox", "measles", "mumps",
"rubella", "whooping cough", "obesity", "GERD", "IBS",
"celiac disease", "ulcerative colitis", "Crohn's disease",
"sleep apnea", "hypothyroidism", "hyperthyroidism"
]
def extract_medical_entities(user_input):
user_input = preprocess_input(user_input)
medical_entities = []
for word in user_input.split():
if word in symptoms or word in diseases:
medical_entities.append(word)
return medical_entities
# Function to encode the image
def encode_image(uploaded_image):
try:
logger.debug("Encoding image...")
buffered = BytesIO()
uploaded_image.save(buffered, format="PNG")
logger.debug("Image encoding complete.")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
except Exception as e:
logger.error(f"Error encoding image: {e}")
raise
# Initialize messages
def initialize_messages():
return [{"role": "system", "content": '''You are Dr. HealthBuddy, a professional, empathetic, and knowledgeable virtual doctor chatbot.'''}]
messages = initialize_messages()
# Function for image prediction using YOLOv5
def predict_image(image):
try:
# Debug: Check if the image is None
if image is None:
return "Error: No image uploaded.", "No description available."
# Convert PIL image to NumPy array
image_np = np.array(image) # Convert PIL image to NumPy array
# Handle grayscale images
if len(image_np.shape) == 2: # Grayscale image
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
# Convert RGB to BGR (OpenCV uses BGR by default)
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
# Resize the image to match the model's expected input size
image_resized = cv2.resize(image_np, (224, 224))
# Transform the image for the model
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
im = transform(image_resized).unsqueeze(0) # Add batch dimension (BCHW)
# Get predictions
with torch.no_grad():
output = model(im) # Raw model output (logits)
# Apply softmax to get confidence scores
softmax = torch.nn.Softmax(dim=1)
probs = softmax(output)
# Get the predicted class and its confidence score
predicted_class_id = torch.argmax(probs, dim=1).item()
confidence_score = probs[0, predicted_class_id].item()
# Get predicted class name if available
if hasattr(model, 'names'):
class_name = model.names[predicted_class_id]
prediction_result = f"Predicted Class: {class_name}\nConfidence: {confidence_score:.4f}"
description = get_description(class_name) # Function to get description
else:
prediction_result = f"Predicted Class ID: {predicted_class_id}\nConfidence: {confidence_score:.4f}"
description = "No description available."
return prediction_result, description
except Exception as e:
logger.error(f"Error in image prediction: {e}")
return f"An error occurred during image prediction: {e}", "No description available."
# Function to get description based on predicted class
def get_description(class_name):
descriptions = {
"bcc": "Basal cell carcinoma (BCC) is a type of skin cancer that begins in the basal cells. It often appears as a slightly transparent bump on the skin, though it can take other forms. BCC grows slowly and is unlikely to spread to other parts of the body, but early treatment is important to prevent damage to surrounding tissues.",
"atopic": "Atopic dermatitis is a chronic skin condition characterized by itchy, inflamed skin. It is common in individuals with a family history of allergies or asthma.",
"acne": "Acne is a skin condition that occurs when hair follicles become clogged with oil and dead skin cells. It often causes pimples, blackheads, and whiteheads, and is most common among teenagers.",
# Add more descriptions as needed
}
return descriptions.get(class_name.lower(), "No description available.")
# Gradio Interface
def chatbot_ui():
with gr.Blocks() as demo:
gr.Markdown("# Healthcare Chatbot Doctor")
# State for user chat history
chat_history = gr.State([])
# Layout for chatbot and input box alignment
with gr.Row():
with gr.Column(scale=3): # Main column for chatbot
chatbot = gr.Chatbot(label="Responses", elem_id="chatbot")
user_input = gr.Textbox(
label="Ask a health-related question",
placeholder="Describe your symptoms...",
elem_id="user-input",
lines=1,
)
with gr.Column(scale=1): # Side column for image and buttons
uploaded_image = gr.Image(label="Upload an Image", type="pil")
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
audio_output = gr.Audio(label="Audio Response")
# New section for image prediction (left and right layout)
with gr.Row():
# Left side: Upload image
with gr.Column():
gr.Markdown("### Upload Image for Prediction")
prediction_image = gr.Image(label="Upload Image", type="pil")
predict_btn = gr.Button("Predict")
# Right side: Prediction result and description
with gr.Column():
gr.Markdown("### Prediction Result")
prediction_output = gr.Textbox(label="Result", interactive=False)
# Description column
gr.Markdown("### Description")
description_output = gr.Textbox(label="Description", interactive=False)
# Clear button for prediction result (below description box)
clear_prediction_btn = gr.Button("Clear Prediction")
# Define actions
def handle_submit(user_query, image, history):
logger.info("User submitted a query.")
response, audio = customLLMBot(user_query, image, history)
return response, audio, None, "", history
# Clear prediction result and image
def clear_prediction(prediction_image, prediction_output, description_output):
return None, "", ""
# Submit on pressing Enter key
user_input.submit(
handle_submit,
inputs=[user_input, uploaded_image, chat_history],
outputs=[chatbot, audio_output, uploaded_image, user_input, chat_history],
)
# Submit on button click
submit_btn.click(
handle_submit,
inputs=[user_input, uploaded_image, chat_history],
outputs=[chatbot, audio_output, uploaded_image, user_input, chat_history],
)
# Action for clearing all fields
clear_btn.click(
lambda: ([], "", None, []),
inputs=[],
outputs=[chatbot, user_input, uploaded_image, chat_history],
)
# Action for image prediction
predict_btn.click(
predict_image,
inputs=[prediction_image],
outputs=[prediction_output, description_output], # Update both outputs
)
# Action for clearing prediction result and image
clear_prediction_btn.click(
clear_prediction,
inputs=[prediction_image, prediction_output, description_output],
outputs=[prediction_image, prediction_output, description_output],
)
return demo
# Launch the interface
#chatbot_ui().launch(server_name="localhost", server_port=7860)
# Launch the interface
chatbot_ui().launch(server_name="0.0.0.0", server_port=7860)
|