Spaces:
Sleeping
Sleeping
File size: 25,062 Bytes
b410607 173e2fe 1ec0b16 d897c87 78b8ee2 d897c87 b410607 c494d1a d897c87 d32256a 27eeeac d897c87 b410607 173e2fe b410607 fa529e8 59b7150 d897c87 b410607 d32256a d897c87 fa529e8 173e2fe b410607 173e2fe b410607 173e2fe b410607 173e2fe b410607 173e2fe b410607 3aa9f69 b410607 d897c87 057e960 d32256a 173e2fe b410607 173e2fe 98205e6 dfd847e d897c87 173e2fe b410607 40c8735 173e2fe 40c8735 173e2fe 98a9a27 173e2fe b410607 082c62c dfd847e f684842 b1186d2 d897c87 d32256a b410607 173e2fe d897c87 4dc0555 1b0a98b 3aa9f69 98205e6 173e2fe 1c66968 173e2fe 5bff428 d897c87 173e2fe d897c87 b410607 d897c87 98205e6 173e2fe 98205e6 b410607 d897c87 173e2fe d897c87 98205e6 b410607 caff306 173e2fe d897c87 98205e6 b410607 b36b54e 173e2fe 1b4e41d 98205e6 1b4e41d 98205e6 1b4e41d b1e86a8 b410607 1ec0b16 b1186d2 d897c87 b410607 173e2fe b410607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
# from groq import Groq
# import gradio as gr
# from gtts import gTTS
# import uuid
# import base64
# from io import BytesIO
# import os
# import logging
# import spacy
# from transformers import pipeline
# # Set up logger
# logger = logging.getLogger(__name__)
# logger.setLevel(logging.DEBUG)
# console_handler = logging.StreamHandler()
# file_handler = logging.FileHandler('chatbot_log.log')
# formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
# console_handler.setFormatter(formatter)
# file_handler.setFormatter(formatter)
# logger.addHandler(console_handler)
# logger.addHandler(file_handler)
# # Initialize Groq Client
# #client = Groq(api_key=os.getenv("GROQ_API_KEY_2"))
# client = Groq(
# api_key="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",
# )
# # Initialize spaCy NLP model for named entity recognition (NER)
# nlp = spacy.load("en_core_web_sm")
# # Initialize sentiment analysis model using Hugging Face
# sentiment_analyzer = pipeline("sentiment-analysis")
# # Function to preprocess user input for better NLP understanding
# def preprocess_input(user_input):
# # Clean up text (remove unnecessary characters, standardize)
# user_input = user_input.strip().lower()
# return user_input
# # Function for sentiment analysis (optional)
# def analyze_sentiment(user_input):
# result = sentiment_analyzer(user_input)
# return result[0]['label'] # Positive, Negative, or Neutral
# # Function to extract medical entities from input using NER
# symptoms = [
# "fever", "cough", "headache", "nausea", "pain", "fatigue", "dizziness",
# "shortness of breath", "sore throat", "runny nose", "congestion", "diarrhea",
# "vomiting", "chills", "sweating", "loss of appetite", "insomnia",
# "itching", "rash", "swelling", "bleeding", "burning sensation",
# "weakness", "tingling", "numbness", "muscle cramps", "joint pain",
# "blurred vision", "double vision", "dry eyes", "sensitivity to light",
# "difficulty breathing", "palpitations", "chest pain", "back pain",
# "stomach ache", "abdominal pain", "weight loss", "weight gain",
# "frequent urination", "difficulty urinating", "anxiety", "depression",
# "irritability", "confusion", "memory loss", "bruising"
# ]
# diseases = [
# "diabetes", "cancer", "asthma", "flu", "pneumonia", "hypertension",
# "arthritis", "bronchitis", "migraine", "stroke", "heart attack",
# "coronary artery disease", "tuberculosis", "malaria", "dengue",
# "hepatitis", "anemia", "thyroid disease", "eczema", "psoriasis",
# "osteoporosis", "parkinson's", "alzheimer's", "depression",
# "anxiety disorder", "schizophrenia", "epilepsy", "bipolar disorder",
# "chronic kidney disease", "liver cirrhosis", "HIV", "AIDS",
# "covid-19", "cholera", "smallpox", "measles", "mumps",
# "rubella", "whooping cough", "obesity", "GERD", "IBS",
# "celiac disease", "ulcerative colitis", "Crohn's disease",
# "sleep apnea", "hypothyroidism", "hyperthyroidism"
# ]
# # Function to extract medical entities
# def extract_medical_entities(user_input):
# user_input = preprocess_input(user_input)
# medical_entities = []
# for word in user_input.split():
# if word in symptoms or word in diseases:
# medical_entities.append(word)
# return medical_entities
# # def extract_medical_entities(user_input):
# # doc = nlp(user_input)
# # medical_entities = [ent.text for ent in doc.ents if ent.label_ == "SYMPTOM" or ent.label_ == "DISEASE"]
# # print(medical_entities)
# # print("This is doc",doc)
# # return medical_entities
# # Function to encode the image
# def encode_image(uploaded_image):
# try:
# logger.debug("Encoding image...")
# buffered = BytesIO()
# uploaded_image.save(buffered, format="PNG")
# logger.debug("Image encoding complete.")
# return base64.b64encode(buffered.getvalue()).decode("utf-8")
# except Exception as e:
# logger.error(f"Error encoding image: {e}")
# raise
# # Initialize messages
# def initialize_messages():
# return [{"role": "system",
# "content": '''You are Dr. HealthBuddy, a professional, empathetic,
# and knowledgeable virtual doctor chatbot. Your purpose is to provide health information,
# symptom guidance, and lifestyle tips using the uploaded dataset as a reference for common
# symptoms and associated conditions.
# Utilize the dataset to provide information about symptoms and possible conditions for educational purposes.
# If a symptom matches data in the dataset, offer users relevant insights, and suggest general management strategies.
# Clearly communicate that you are not a substitute for professional medical advice.
# Encourage users to consult a licensed healthcare provider for any severe or persistent health issues.
# Maintain a friendly and understanding tone in all responses.
# Examples:
# User: "I have skin rash and itching. What could it be?"
# Response: "According to the data, skin rash and itching are common symptoms of conditions like fungal infections.
# You can try keeping the affected area dry and clean, and using over-the-counter antifungal creams.
# If the rash persists or worsens, please consult a dermatologist."
# User: "What might cause nodal skin eruptions?"
# Response: "Nodal skin eruptions could be linked to conditions such as fungal infections.
# It's best to monitor the symptoms and avoid scratching.
# For a proper diagnosis, consider visiting a healthcare provider.'''}]
# messages = initialize_messages()
# def customLLMBot(user_input, uploaded_image, chat_history):
# try:
# global messages
# logger.info("Processing input...")
# # Preprocess the user input
# user_input = preprocess_input(user_input)
# # Analyze sentiment (Optional)
# sentiment = analyze_sentiment(user_input)
# logger.info(f"Sentiment detected: {sentiment}")
# # Extract medical entities (Optional)
# medical_entities = extract_medical_entities(user_input)
# logger.info(f"Extracted medical entities: {medical_entities}")
# # Append user input to the chat history
# chat_history.append(("user", user_input))
# if uploaded_image is not None:
# # Encode the image to base64
# base64_image = encode_image(uploaded_image)
# logger.debug(f"Image received, size: {len(base64_image)} bytes")
# # Create a message for the image prompt
# messages_image = [
# {
# "role": "user",
# "content": [
# {"type": "text", "text": "What's in this image?"},
# {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
# ]
# }
# ]
# logger.info("Sending image to Groq API for processing...")
# response = client.chat.completions.create(
# model="llama-3.2-11b-vision-preview",
# messages=messages_image,
# )
# logger.info("Image processed successfully.")
# else:
# # Process text input
# logger.info("Processing text input...")
# messages.append({
# "role": "user",
# "content": user_input
# })
# response = client.chat.completions.create(
# model="llama-3.2-11b-vision-preview",
# messages=messages,
# )
# logger.info("Text processed successfully.")
# # Extract the reply
# LLM_reply = response.choices[0].message.content
# logger.debug(f"LLM reply: {LLM_reply}")
# # Append the bot's response to the chat history
# chat_history.append(("bot", LLM_reply))
# messages.append({"role": "assistant", "content": LLM_reply})
# # Generate audio for response
# audio_file = f"response_{uuid.uuid4().hex}.mp3"
# tts = gTTS(LLM_reply, lang='en')
# tts.save(audio_file)
# logger.info(f"Audio response saved as {audio_file}")
# # Return chat history and audio file
# return chat_history, audio_file
# except Exception as e:
# logger.error(f"Error in customLLMBot function: {e}")
# return [("user", user_input or "Image uploaded"), ("bot", f"An error occurred: {e}")], None
# # Gradio Interface
# def chatbot_ui():
# with gr.Blocks() as demo:
# gr.Markdown("# Healthcare Chatbot Doctor")
# # State for user chat history
# chat_history = gr.State([])
# # Layout for chatbot and input box alignment
# with gr.Row():
# with gr.Column(scale=3): # Main column for chatbot
# chatbot = gr.Chatbot(label="Responses", elem_id="chatbot")
# user_input = gr.Textbox(
# label="Ask a health-related question",
# placeholder="Describe your symptoms...",
# elem_id="user-input",
# lines=1,
# )
# with gr.Column(scale=1): # Side column for image and buttons
# uploaded_image = gr.Image(label="Upload an Image", type="pil")
# submit_btn = gr.Button("Submit")
# clear_btn = gr.Button("Clear")
# audio_output = gr.Audio(label="Audio Response")
# # Define actions
# def handle_submit(user_query, image, history):
# logger.info("User submitted a query.")
# response, audio = customLLMBot(user_query, image, history)
# return response, audio, None, "", history # Clear the image after submission
# # Submit on pressing Enter key
# user_input.submit(
# handle_submit,
# inputs=[user_input, uploaded_image, chat_history],
# outputs=[chatbot, audio_output, uploaded_image, user_input, chat_history],
# )
# # Submit on button click
# submit_btn.click(
# handle_submit,
# inputs=[user_input, uploaded_image, chat_history],
# outputs=[chatbot, audio_output, uploaded_image, user_input, chat_history],
# )
# # Action for clearing all fields
# clear_btn.click(
# lambda: ([], "", None, []),
# inputs=[],
# outputs=[chatbot, user_input, uploaded_image, chat_history],
# )
# return demo
# # Launch the interface
# #chatbot_ui().launch(server_name="0.0.0.0", server_port=7860)
# chatbot_ui().launch(server_name="localhost", server_port=7860)
from groq import Groq
import gradio as gr
from gtts import gTTS
import uuid
import base64
from io import BytesIO
import os
import logging
import spacy
from transformers import pipeline
import torch
from PIL import Image
from torchvision import transforms
import pathlib
import cv2 # Import OpenCV
import numpy as np
# # Pathlib adjustment for Windows compatibility
# temp = pathlib.PosixPath
# pathlib.PosixPath = pathlib.WindowsPath
# Set up logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
console_handler = logging.StreamHandler()
file_handler = logging.FileHandler('chatbot_log.log')
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
file_handler.setFormatter(formatter)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
#Initialize Groq Client
client = Groq(api_key=os.getenv("GROQ_API_KEY_2"))
# # Initialize Groq Client
# client = Groq(api_key="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")
# Initialize spaCy NLP model for named entity recognition (NER)
nlp = spacy.load("en_core_web_sm")
# Initialize sentiment analysis model using Hugging Face
sentiment_analyzer = pipeline("sentiment-analysis")
# Load pre-trained YOLOv5 model
def load_yolov5_model():
model = torch.hub.load(
r'C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\yolov5',
'custom',
path=r"C:\Users\RESHMA R B\OneDrive\Documents\Desktop\project_without_malayalam\chatbot2\models\best.pt",
source="local"
)
model.eval()
return model
model = load_yolov5_model()
# Function to preprocess user input for better NLP understanding
def preprocess_input(user_input):
user_input = user_input.strip().lower()
return user_input
# Function for sentiment analysis (optional)
def analyze_sentiment(user_input):
result = sentiment_analyzer(user_input)
return result[0]['label']
# Function to extract medical entities from input using NER
symptoms = [
"fever", "cough", "headache", "nausea", "pain", "fatigue", "dizziness",
"shortness of breath", "sore throat", "runny nose", "congestion", "diarrhea",
"vomiting", "chills", "sweating", "loss of appetite", "insomnia",
"itching", "rash", "swelling", "bleeding", "burning sensation",
"weakness", "tingling", "numbness", "muscle cramps", "joint pain",
"blurred vision", "double vision", "dry eyes", "sensitivity to light",
"difficulty breathing", "palpitations", "chest pain", "back pain",
"stomach ache", "abdominal pain", "weight loss", "weight gain",
"frequent urination", "difficulty urinating", "anxiety", "depression",
"irritability", "confusion", "memory loss", "bruising"
]
diseases = [
"diabetes", "cancer", "asthma", "flu", "pneumonia", "hypertension",
"arthritis", "bronchitis", "migraine", "stroke", "heart attack",
"coronary artery disease", "tuberculosis", "malaria", "dengue",
"hepatitis", "anemia", "thyroid disease", "eczema", "psoriasis",
"osteoporosis", "parkinson's", "alzheimer's", "depression",
"anxiety disorder", "schizophrenia", "epilepsy", "bipolar disorder",
"chronic kidney disease", "liver cirrhosis", "HIV", "AIDS",
"covid-19", "cholera", "smallpox", "measles", "mumps",
"rubella", "whooping cough", "obesity", "GERD", "IBS",
"celiac disease", "ulcerative colitis", "Crohn's disease",
"sleep apnea", "hypothyroidism", "hyperthyroidism"
]
def extract_medical_entities(user_input):
user_input = preprocess_input(user_input)
medical_entities = []
for word in user_input.split():
if word in symptoms or word in diseases:
medical_entities.append(word)
return medical_entities
# Function to encode the image
def encode_image(uploaded_image):
try:
logger.debug("Encoding image...")
buffered = BytesIO()
uploaded_image.save(buffered, format="PNG")
logger.debug("Image encoding complete.")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
except Exception as e:
logger.error(f"Error encoding image: {e}")
raise
# Initialize messages
def initialize_messages():
return [{"role": "system", "content": '''You are Dr. HealthBuddy, a professional, empathetic, and knowledgeable virtual doctor chatbot.'''}]
messages = initialize_messages()
# Function for image prediction using YOLOv5
def predict_image(image):
try:
# Debug: Check if the image is None
if image is None:
return "Error: No image uploaded.", "No description available."
# Convert PIL image to NumPy array (OpenCV format)
image_np = np.array(image) # Convert PIL image to NumPy array
# Convert RGB to BGR (OpenCV uses BGR by default)
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
# Resize the image to match the model's expected input size
image_resized = cv2.resize(image_np, (224, 224))
# Transform the image for the model
transform = transforms.Compose([
transforms.ToTensor(), # Convert image to tensor
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # Normalize
])
im = transform(image_resized).unsqueeze(0) # Add batch dimension (BCHW)
# Get predictions
with torch.no_grad():
output = model(im) # Raw model output (logits)
# Apply softmax to get confidence scores
softmax = torch.nn.Softmax(dim=1)
probs = softmax(output)
# Get the predicted class and its confidence score
predicted_class_id = torch.argmax(probs, dim=1).item()
confidence_score = probs[0, predicted_class_id].item()
# Get predicted class name if available
if hasattr(model, 'names'):
class_name = model.names[predicted_class_id]
prediction_result = f"Predicted Class: {class_name}\nConfidence: {confidence_score:.4f}"
description = get_description(class_name) # Function to get description
else:
prediction_result = f"Predicted Class ID: {predicted_class_id}\nConfidence: {confidence_score:.4f}"
description = "No description available."
# Display the image with OpenCV (optional)
cv2.imshow("Processed Image", image_resized)
cv2.waitKey(1) # Wait for 1 ms to display the image
return prediction_result, description
except Exception as e:
logger.error(f"Error in image prediction: {e}")
return f"An error occurred during image prediction: {e}", "No description available."
# Function to get description based on predicted class
def get_description(class_name):
descriptions = {
"bcc": "Basal cell carcinoma (BCC) is a type of skin cancer that begins in the basal cells. It often appears as a slightly transparent bump on the skin, though it can take other forms. BCC grows slowly and is unlikely to spread to other parts of the body, but early treatment is important to prevent damage to surrounding tissues.",
"atopic": "Atopic dermatitis is a chronic skin condition characterized by itchy, inflamed skin. It is common in individuals with a family history of allergies or asthma.",
"acne": "Acne is a skin condition that occurs when hair follicles become clogged with oil and dead skin cells. It often causes pimples, blackheads, and whiteheads, and is most common among teenagers.",
# Add more descriptions as needed
}
return descriptions.get(class_name.lower(), "No description available.")
# Custom LLM Bot Function
def customLLMBot(user_input, uploaded_image, chat_history):
try:
global messages
logger.info("Processing input...")
# Preprocess the user input
user_input = preprocess_input(user_input)
# Analyze sentiment (Optional)
sentiment = analyze_sentiment(user_input)
logger.info(f"Sentiment detected: {sentiment}")
# Extract medical entities (Optional)
medical_entities = extract_medical_entities(user_input)
logger.info(f"Extracted medical entities: {medical_entities}")
# Append user input to the chat history
chat_history.append(("user", user_input))
if uploaded_image is not None:
# Encode the image to base64
base64_image = encode_image(uploaded_image)
logger.debug(f"Image received, size: {len(base64_image)} bytes")
# Create a message for the image prompt
messages_image = [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
]
}
]
logger.info("Sending image to Groq API for processing...")
response = client.chat.completions.create(
model="llama-3.2-11b-vision-preview",
messages=messages_image,
)
logger.info("Image processed successfully.")
else:
# Process text input
logger.info("Processing text input...")
messages.append({
"role": "user",
"content": user_input
})
response = client.chat.completions.create(
model="llama-3.2-11b-vision-preview",
messages=messages,
)
logger.info("Text processed successfully.")
# Extract the reply
LLM_reply = response.choices[0].message.content
logger.debug(f"LLM reply: {LLM_reply}")
# Append the bot's response to the chat history
chat_history.append(("bot", LLM_reply))
messages.append({"role": "assistant", "content": LLM_reply})
# Generate audio for response
audio_file = f"response_{uuid.uuid4().hex}.mp3"
tts = gTTS(LLM_reply, lang='en')
tts.save(audio_file)
logger.info(f"Audio response saved as {audio_file}")
# Return chat history and audio file
return chat_history, audio_file
except Exception as e:
logger.error(f"Error in customLLMBot function: {e}")
return [("user", user_input or "Image uploaded"), ("bot", f"An error occurred: {e}")], None
# Gradio Interface
def chatbot_ui():
with gr.Blocks() as demo:
gr.Markdown("# Healthcare Chatbot Doctor")
# State for user chat history
chat_history = gr.State([])
# Layout for chatbot and input box alignment
with gr.Row():
with gr.Column(scale=3): # Main column for chatbot
chatbot = gr.Chatbot(label="Responses", elem_id="chatbot")
user_input = gr.Textbox(
label="Ask a health-related question",
placeholder="Describe your symptoms...",
elem_id="user-input",
lines=1,
)
with gr.Column(scale=1): # Side column for image and buttons
uploaded_image = gr.Image(label="Upload an Image", type="pil")
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
audio_output = gr.Audio(label="Audio Response")
# New section for image prediction (left and right layout)
with gr.Row():
# Left side: Upload image
with gr.Column():
gr.Markdown("### Upload Image for Prediction")
prediction_image = gr.Image(label="Upload Image", type="pil")
predict_btn = gr.Button("Predict")
# Right side: Prediction result and description
with gr.Column():
gr.Markdown("### Prediction Result")
prediction_output = gr.Textbox(label="Result", interactive=False)
# Description column
gr.Markdown("### Description")
description_output = gr.Textbox(label="Description", interactive=False)
# Clear button for prediction result (below description box)
clear_prediction_btn = gr.Button("Clear Prediction")
# Define actions
def handle_submit(user_query, image, history):
logger.info("User submitted a query.")
response, audio = customLLMBot(user_query, image, history)
return response, audio, None, "", history
# Clear prediction result and image
def clear_prediction(prediction_image, prediction_output, description_output):
return None, "", ""
# Submit on pressing Enter key
user_input.submit(
handle_submit,
inputs=[user_input, uploaded_image, chat_history],
outputs=[chatbot, audio_output, uploaded_image, user_input, chat_history],
)
# Submit on button click
submit_btn.click(
handle_submit,
inputs=[user_input, uploaded_image, chat_history],
outputs=[chatbot, audio_output, uploaded_image, user_input, chat_history],
)
# Action for clearing all fields
clear_btn.click(
lambda: ([], "", None, []),
inputs=[],
outputs=[chatbot, user_input, uploaded_image, chat_history],
)
# Action for image prediction
predict_btn.click(
predict_image,
inputs=[prediction_image],
outputs=[prediction_output, description_output], # Update both outputs
)
# Action for clearing prediction result and image
clear_prediction_btn.click(
clear_prediction,
inputs=[prediction_image, prediction_output, description_output],
outputs=[prediction_image, prediction_output, description_output],
)
return demo
# Launch the interface
# chatbot_ui().launch(server_name="localhost", server_port=7860)
# Launch the interface
chatbot_ui().launch(server_name="0.0.0.0", server_port=7860) |