Spaces:
Build error
Build error
File size: 5,060 Bytes
d7b2919 b124b4a d7b2919 7216128 d7b2919 31db171 d7b2919 b124b4a d7b2919 b124b4a d7b2919 b124b4a d7b2919 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# -*- coding: utf-8 -*-
"""
@Author : Rong Ye
@Time : May 2022
@Contact : yerong@bytedance
@Description:
"""
import os
import shutil
import yaml
import torchaudio
import gradio as gr
from huggingface_hub import snapshot_download
LANGUAGE_CODES = {
"German": "de",
"Spanish": "es",
"French": "fr",
"Italian": "it",
"Netherlands": "nl",
"Portuguese": "pt",
"Romanian": "ro",
"Russian": "ru",
}
LANG_GEN_SETUPS = {
"de": {"beam": 10, "lenpen": 0.7},
"es": {"beam": 10, "lenpen": 0.7},
"fr": {"beam": 10, "lenpen": 0.7},
"it": {"beam": 10, "lenpen": 0.7},
"nl": {"beam": 10, "lenpen": 0.7},
"pt": {"beam": 10, "lenpen": 0.7},
"ro": {"beam": 10, "lenpen": 0.7},
"ru": {"beam": 10, "lenpen": 0.1},
}
os.system("git clone https://github.com/ReneeYe/ConST")
os.system('mv ConST/* ./')
os.system("rm -rf ConST")
os.system("python3 setup.py install")
os.system("python3 setup.py build_ext --inplace")
os.system("mkdir -p data checkpoint")
huggingface_model_dir = snapshot_download(repo_id="ReneeYe/ConST_en2x_models")
print(huggingface_model_dir)
def convert_audio_to_16k_wav(audio_input):
num_frames = torchaudio.info(audio_input.name).num_frames
filename = audio_input.name.split("/")[-1]
shutil.copy(audio_input.name, f'data/{filename}')
return f'data/{filename}', num_frames
def prepare_tsv(file_name, n_frame, language, task="ST"):
tgt_lang = LANGUAGE_CODES[language]
with open("data/test_case.tsv", "w") as f:
f.write("id\taudio\tn_frames\ttgt_text\tspeaker\tsrc_lang\ttgt_lang\tsrc_text\n")
f.write(f"sample\t{file_name}\t{n_frame}\tThis is in {tgt_lang}.\tspk.1\ten\t{tgt_lang}\tThis is English.\n")
def get_vocab_and_yaml(language):
tgt_lang = LANGUAGE_CODES[language]
# get: spm_ende.model and spm_ende.txt, and save to data/xxx
# if exist, no need to download
shutil.copy(os.path.join(huggingface_model_dir, f"vocabulary/spm_en{tgt_lang}.model"), "./data")
shutil.copy(os.path.join(huggingface_model_dir, f"vocabulary/spm_en{tgt_lang}.txt"), "./data")
# write yaml file
abs_path = os.popen("pwd").read().strip()
yaml_dict = LANG_GEN_SETUPS["tgt_lang"]
yaml_dict["input_channels"] = 1
yaml_dict["use_audio_input"] = True
yaml_dict["prepend_tgt_lang_tag"] = True
yaml_dict["prepend_src_lang_tag"] = True
yaml_dict["audio_root"] = os.path.join(abs_path, "data")
yaml_dict["vocab_filename"] = f"spm_en{tgt_lang}.txt"
yaml_dict["bpe_tokenizer"] = {"bpe": "sentencepiece",
"sentencepiece_model": os.path.join(abs_path, f"data/spm_en{tgt_lang}.model")}
with open("data/config.yaml", "w") as f:
yaml.dump(yaml_dict, f)
def get_model(language):
# download models to checkpoint/xxx
return os.path.join(huggingface_model_dir, f"models/const_en{LANGUAGE_CODES[language]}.pt")
def generate(model_path):
os.system(f"fairseq-generate data/ --gen-subset test_case --task speech_to_text --prefix-size 1 \
--max-tokens 4000000 --max-source-positions 4000000 \
--config-yaml config.yaml --path {model_path} | tee temp.txt")
output = os.popen("grep ^D temp.txt | sort -n -k 2 -t '-' | cut -f 3")
return output.read().strip()
def remove_temp_files():
os.remove("temp.txt")
os.remove("data/test_case.tsv")
def run(audio_file, language):
converted_audio_file, n_frame = convert_audio_to_16k_wav(audio_file)
prepare_tsv(converted_audio_file, n_frame, language)
get_vocab_and_yaml(language)
model_path = get_model(language)
generated_output = generate(model_path)
remove_temp_files()
return generated_output
def greet(audio_file, language):
print(audio_file.name)
return f"Hello {language}!!"
inputs = [
gr.inputs.Audio(source="microphone", type="file", label="Record something (in English)..."),
gr.inputs.Dropdown(list(LANGUAGE_CODES.keys()), default="German", label="From English to Languages X..."),
]
iface = gr.Interface(
fn=run,
inputs=inputs,
outputs=[gr.outputs.Textbox(label="The translation")],
examples=[['case1.wav', "German"],['case2.wav', "German"], ['case3.wav', "German"]],
title="ConST: an end-to-end speech translator",
description="End-to-end Speech Translation Live Demo for English to eight European languages.",
article="ConST is an end-to-end speech translation model (see paper <a href='https://arxiv.org/abs/2205.02444', target='_blank'>here</a>). "
"Its motivation is to use contrastive learning method to learn similar representations for semantically similar speech and text.",
theme="seafoam",
layout='vertical',
# analytics_enabled=False,
# flagging_dir='results/flagged/',
# allow_flagging=True,
# flagging_options=['Interesting!', 'Error: Claim Phrase Parsing', 'Error: Local Premise',
# 'Error: Require Commonsense', 'Error: Evidence Retrieval'],
enable_queue=True
)
iface.launch(inline=False) |