File size: 13,087 Bytes
a9cce51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7870\n",
      "* Running on public URL: https://a94e18f722148a0463.gradio.live\n",
      "\n",
      "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"https://a94e18f722148a0463.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, TextClassificationPipeline\n",
    "import torch\n",
    "import gradio as gr\n",
    "from openpyxl import load_workbook\n",
    "from numpy import mean\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "theme = gr.themes.Soft(\n",
    "    primary_hue=\"amber\",\n",
    "    secondary_hue=\"amber\",\n",
    "    neutral_hue=\"stone\",\n",
    ")\n",
    "\n",
    "# Load tokenizers and models\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"suriya7/bart-finetuned-text-summarization\")\n",
    "model = AutoModelForSeq2SeqLM.from_pretrained(\"suriya7/bart-finetuned-text-summarization\")\n",
    "\n",
    "tokenizer_keywords = AutoTokenizer.from_pretrained(\"transformer3/H2-keywordextractor\")\n",
    "model_keywords = AutoModelForSeq2SeqLM.from_pretrained(\"transformer3/H2-keywordextractor\")\n",
    "\n",
    "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
    "new_model = AutoModelForSequenceClassification.from_pretrained('roberta-rating')\n",
    "new_tokenizer = AutoTokenizer.from_pretrained('roberta-rating')\n",
    "\n",
    "classifier = TextClassificationPipeline(model=new_model, tokenizer=new_tokenizer, device=device)\n",
    "\n",
    "label_mapping = {1: '1/5', 2: '2/5', 3: '3/5', 4: '4/5', 5: '5/5'}\n",
    "\n",
    "# Function to display and filter the Excel workbook\n",
    "def filter_xl(file, keywords):\n",
    "    # Load the workbook and convert it to a DataFrame\n",
    "    workbook = load_workbook(filename=file)\n",
    "    sheet = workbook.active\n",
    "    data = sheet.values\n",
    "    columns = next(data)[0:]\n",
    "    df = pd.DataFrame(data, columns=columns)\n",
    "    \n",
    "    if keywords:\n",
    "        keyword_list = keywords.split(',')\n",
    "        for keyword in keyword_list:\n",
    "            df = df[df.apply(lambda row: row.astype(str).str.contains(keyword.strip(), case=False).any(), axis=1)]\n",
    "    \n",
    "    return df\n",
    "\n",
    "# Function to calculate overall rating from filtered data\n",
    "def calculate_rating(filtered_df):\n",
    "    reviews = filtered_df.to_numpy().flatten()\n",
    "    ratings = []\n",
    "    for review in reviews:\n",
    "        if pd.notna(review):\n",
    "            rating = int(classifier(review)[0]['label'].split('_')[1])\n",
    "            ratings.append(rating)\n",
    "    \n",
    "    return round(mean(ratings), 2), ratings\n",
    "\n",
    "# Function to calculate results including summary, keywords, and sentiment\n",
    "def calculate_results(file, keywords):\n",
    "    filtered_df = filter_xl(file, keywords)\n",
    "    overall_rating, ratings = calculate_rating(filtered_df)\n",
    "    \n",
    "    # Summarize and extract keywords from the filtered reviews\n",
    "    text = \" \".join(filtered_df.to_numpy().flatten())\n",
    "    inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors=\"pt\")\n",
    "    summary_ids = model.generate(inputs[\"input_ids\"], num_beams=2, min_length=10, max_length=50)\n",
    "    summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]\n",
    "    summary = summary.replace(\"I\", \"They\").replace(\"my\", \"their\").replace(\"me\", \"them\")\n",
    "\n",
    "    inputs_keywords = tokenizer_keywords([text], max_length=1024, truncation=True, return_tensors=\"pt\")\n",
    "    summary_ids_keywords = model_keywords.generate(inputs_keywords[\"input_ids\"], num_beams=2, min_length=0, max_length=100)\n",
    "    keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]\n",
    "\n",
    "    # Determine overall sentiment\n",
    "    sentiments = []\n",
    "    for review in filtered_df.to_numpy().flatten():\n",
    "        if pd.notna(review):\n",
    "            sentiment = classifier(review)[0]['label']\n",
    "            sentiment_label = \"Positive\" if sentiment == \"LABEL_4\" or sentiment == \"LABEL_5\" else \"Negative\" if sentiment == \"LABEL_1\" or sentiment == \"LABEL_2\" else \"Neutral\"\n",
    "            sentiments.append(sentiment_label)\n",
    "    \n",
    "    overall_sentiment = \"Positive\" if sentiments.count(\"Positive\") > sentiments.count(\"Negative\") else \"Negative\" if sentiments.count(\"Negative\") > sentiments.count(\"Positive\") else \"Neutral\"\n",
    "\n",
    "    return overall_rating, summary, keywords, overall_sentiment, ratings, sentiments\n",
    "\n",
    "# Function to analyze a single review\n",
    "def analyze_review(review):\n",
    "    if not review.strip():\n",
    "        return \"Error: No text provided\", \"Error: No text provided\", \"Error: No text provided\", \"Error: No text provided\"\n",
    "    \n",
    "    # Calculate rating\n",
    "    rating = int(classifier(review)[0]['label'].split('_')[1])\n",
    "    \n",
    "    # Summarize review\n",
    "    inputs = tokenizer([review], max_length=1024, truncation=True, return_tensors=\"pt\")\n",
    "    summary_ids = model.generate(inputs[\"input_ids\"], num_beams=2, min_length=10, max_length=50)\n",
    "    summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]\n",
    "    summary = summary.replace(\"I\", \"he/she\").replace(\"my\", \"his/her\").replace(\"me\", \"him/her\")\n",
    "\n",
    "    # Extract keywords\n",
    "    inputs_keywords = tokenizer_keywords([review], max_length=1024, truncation=True, return_tensors=\"pt\")\n",
    "    summary_ids_keywords = model_keywords.generate(inputs_keywords[\"input_ids\"], num_beams=2, min_length=0, max_length=100)\n",
    "    keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]\n",
    "\n",
    "    # Determine sentiment\n",
    "    sentiment = classifier(review)[0]['label']\n",
    "    sentiment_label = \"Positive\" if sentiment == \"LABEL_4\" or sentiment == \"LABEL_5\" else \"Negative\" if sentiment == \"LABEL_1\" or sentiment == \"LABEL_2\" else \"Neutral\"\n",
    "\n",
    "    return rating, summary, keywords, sentiment_label\n",
    "\n",
    "# Function to count rows in the filtered DataFrame\n",
    "def count_rows(filtered_df):\n",
    "    return len(filtered_df)\n",
    "\n",
    "# Function to plot ratings\n",
    "def plot_ratings(ratings):\n",
    "    plt.figure(figsize=(10, 5))\n",
    "    plt.hist(ratings, bins=range(1, 7), edgecolor='black', align='left')\n",
    "    plt.xlabel('Rating')\n",
    "    plt.ylabel('Frequency')\n",
    "    plt.title('Distribution of Ratings')\n",
    "    plt.xticks(range(1, 6))\n",
    "    plt.grid(True)\n",
    "    plt.savefig('ratings_distribution.png')\n",
    "    return 'ratings_distribution.png'\n",
    "\n",
    "# Function to plot sentiments\n",
    "def plot_sentiments(sentiments):\n",
    "    sentiment_counts = pd.Series(sentiments).value_counts()\n",
    "    plt.figure(figsize=(10, 5))\n",
    "    sentiment_counts.plot(kind='bar', color=['green', 'red', 'blue'])\n",
    "    plt.xlabel('Sentiment')\n",
    "    plt.ylabel('Frequency')\n",
    "    plt.title('Distribution of Sentiments')\n",
    "    plt.grid(True)\n",
    "    plt.savefig('sentiments_distribution.png')\n",
    "    return 'sentiments_distribution.png'\n",
    "\n",
    "# Gradio interface\n",
    "with gr.Blocks(theme=theme) as demo:\n",
    "    gr.Markdown(\"<h1 style='text-align: center;'>Feedback and Auditing Survey AI Analyzer</h1><br>\")\n",
    "    with gr.Tabs():\n",
    "        with gr.TabItem(\"Upload and Filter\"):\n",
    "            with gr.Row():\n",
    "                with gr.Column(scale=1):\n",
    "                    excel_file = gr.File(label=\"Upload Excel File\")\n",
    "                    #excel_file = gr.File(label=\"Upload Excel File\", file_types=[\".xlsx\", \".xlsm\", \".xltx\", \".xltm\"])\n",
    "                    keywords_input = gr.Textbox(label=\"Filter by Keywords (comma-separated)\")\n",
    "                    display_button = gr.Button(\"Display and Filter Excel Data\")\n",
    "                    clear_button_upload = gr.Button(\"Clear\")\n",
    "                    row_count = gr.Textbox(label=\"Number of Rows\", interactive=False)\n",
    "                with gr.Column(scale=3):\n",
    "                    filtered_data = gr.Dataframe(label=\"Filtered Excel Contents\")\n",
    "        \n",
    "        with gr.TabItem(\"Calculate Results\"):\n",
    "            with gr.Row():\n",
    "                with gr.Column():\n",
    "                    overall_rating = gr.Textbox(label=\"Overall Rating\")\n",
    "                    summary = gr.Textbox(label=\"Summary\")\n",
    "                    keywords_output = gr.Textbox(label=\"Keywords\")\n",
    "                    overall_sentiment = gr.Textbox(label=\"Overall Sentiment\")\n",
    "                    calculate_button = gr.Button(\"Calculate Results\")\n",
    "                with gr.Column():\n",
    "                    ratings_graph = gr.Image(label=\"Ratings Distribution\")\n",
    "                    sentiments_graph = gr.Image(label=\"Sentiments Distribution\")\n",
    "                    calculate_graph_button = gr.Button(\"Calculate Graph Results\")\n",
    "        \n",
    "        with gr.TabItem(\"Testing Area / Write a Review\"):\n",
    "            with gr.Row():\n",
    "                with gr.Column(scale=2):\n",
    "                    review_input = gr.Textbox(label=\"Write your review here\")\n",
    "                    analyze_button = gr.Button(\"Analyze Review\")\n",
    "                    clear_button_review = gr.Button(\"Clear\")\n",
    "                with gr.Column(scale=2):\n",
    "                    review_rating = gr.Textbox(label=\"Rating\")\n",
    "                    review_summary = gr.Textbox(label=\"Summary\")\n",
    "                    review_keywords = gr.Textbox(label=\"Keywords\")\n",
    "                    review_sentiment = gr.Textbox(label=\"Sentiment\")\n",
    "\n",
    "    display_button.click(lambda file, keywords: (filter_xl(file, keywords), count_rows(filter_xl(file, keywords))), inputs=[excel_file, keywords_input], outputs=[filtered_data, row_count])\n",
    "    calculate_graph_button.click(lambda file, keywords: (*calculate_results(file, keywords)[:4], plot_ratings(calculate_results(file, keywords)[4]), plot_sentiments(calculate_results(file, keywords)[5])), inputs=[excel_file, keywords_input], outputs=[overall_rating, summary, keywords_output, overall_sentiment, ratings_graph, sentiments_graph])\n",
    "    calculate_button.click(lambda file, keywords: (*calculate_results(file, keywords)[:4], plot_ratings(calculate_results(file, keywords)[4])), inputs=[excel_file, keywords_input], outputs=[overall_rating, summary, keywords_output, overall_sentiment])\n",
    "    analyze_button.click(analyze_review, inputs=review_input, outputs=[review_rating, review_summary, review_keywords, review_sentiment])\n",
    "    clear_button_upload.click(lambda: (\"\"), outputs=[keywords_input])\n",
    "    clear_button_review.click(lambda: (\"\", \"\", \"\", \"\", \"\"), outputs=[review_input, review_rating, review_summary, review_keywords, review_sentiment])\n",
    "\n",
    "demo.launch(share=True)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "SolutionsInPR",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}