File size: 13,087 Bytes
a9cce51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7870\n",
"* Running on public URL: https://a94e18f722148a0463.gradio.live\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"https://a94e18f722148a0463.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, TextClassificationPipeline\n",
"import torch\n",
"import gradio as gr\n",
"from openpyxl import load_workbook\n",
"from numpy import mean\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"\n",
"theme = gr.themes.Soft(\n",
" primary_hue=\"amber\",\n",
" secondary_hue=\"amber\",\n",
" neutral_hue=\"stone\",\n",
")\n",
"\n",
"# Load tokenizers and models\n",
"tokenizer = AutoTokenizer.from_pretrained(\"suriya7/bart-finetuned-text-summarization\")\n",
"model = AutoModelForSeq2SeqLM.from_pretrained(\"suriya7/bart-finetuned-text-summarization\")\n",
"\n",
"tokenizer_keywords = AutoTokenizer.from_pretrained(\"transformer3/H2-keywordextractor\")\n",
"model_keywords = AutoModelForSeq2SeqLM.from_pretrained(\"transformer3/H2-keywordextractor\")\n",
"\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"new_model = AutoModelForSequenceClassification.from_pretrained('roberta-rating')\n",
"new_tokenizer = AutoTokenizer.from_pretrained('roberta-rating')\n",
"\n",
"classifier = TextClassificationPipeline(model=new_model, tokenizer=new_tokenizer, device=device)\n",
"\n",
"label_mapping = {1: '1/5', 2: '2/5', 3: '3/5', 4: '4/5', 5: '5/5'}\n",
"\n",
"# Function to display and filter the Excel workbook\n",
"def filter_xl(file, keywords):\n",
" # Load the workbook and convert it to a DataFrame\n",
" workbook = load_workbook(filename=file)\n",
" sheet = workbook.active\n",
" data = sheet.values\n",
" columns = next(data)[0:]\n",
" df = pd.DataFrame(data, columns=columns)\n",
" \n",
" if keywords:\n",
" keyword_list = keywords.split(',')\n",
" for keyword in keyword_list:\n",
" df = df[df.apply(lambda row: row.astype(str).str.contains(keyword.strip(), case=False).any(), axis=1)]\n",
" \n",
" return df\n",
"\n",
"# Function to calculate overall rating from filtered data\n",
"def calculate_rating(filtered_df):\n",
" reviews = filtered_df.to_numpy().flatten()\n",
" ratings = []\n",
" for review in reviews:\n",
" if pd.notna(review):\n",
" rating = int(classifier(review)[0]['label'].split('_')[1])\n",
" ratings.append(rating)\n",
" \n",
" return round(mean(ratings), 2), ratings\n",
"\n",
"# Function to calculate results including summary, keywords, and sentiment\n",
"def calculate_results(file, keywords):\n",
" filtered_df = filter_xl(file, keywords)\n",
" overall_rating, ratings = calculate_rating(filtered_df)\n",
" \n",
" # Summarize and extract keywords from the filtered reviews\n",
" text = \" \".join(filtered_df.to_numpy().flatten())\n",
" inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors=\"pt\")\n",
" summary_ids = model.generate(inputs[\"input_ids\"], num_beams=2, min_length=10, max_length=50)\n",
" summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]\n",
" summary = summary.replace(\"I\", \"They\").replace(\"my\", \"their\").replace(\"me\", \"them\")\n",
"\n",
" inputs_keywords = tokenizer_keywords([text], max_length=1024, truncation=True, return_tensors=\"pt\")\n",
" summary_ids_keywords = model_keywords.generate(inputs_keywords[\"input_ids\"], num_beams=2, min_length=0, max_length=100)\n",
" keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]\n",
"\n",
" # Determine overall sentiment\n",
" sentiments = []\n",
" for review in filtered_df.to_numpy().flatten():\n",
" if pd.notna(review):\n",
" sentiment = classifier(review)[0]['label']\n",
" sentiment_label = \"Positive\" if sentiment == \"LABEL_4\" or sentiment == \"LABEL_5\" else \"Negative\" if sentiment == \"LABEL_1\" or sentiment == \"LABEL_2\" else \"Neutral\"\n",
" sentiments.append(sentiment_label)\n",
" \n",
" overall_sentiment = \"Positive\" if sentiments.count(\"Positive\") > sentiments.count(\"Negative\") else \"Negative\" if sentiments.count(\"Negative\") > sentiments.count(\"Positive\") else \"Neutral\"\n",
"\n",
" return overall_rating, summary, keywords, overall_sentiment, ratings, sentiments\n",
"\n",
"# Function to analyze a single review\n",
"def analyze_review(review):\n",
" if not review.strip():\n",
" return \"Error: No text provided\", \"Error: No text provided\", \"Error: No text provided\", \"Error: No text provided\"\n",
" \n",
" # Calculate rating\n",
" rating = int(classifier(review)[0]['label'].split('_')[1])\n",
" \n",
" # Summarize review\n",
" inputs = tokenizer([review], max_length=1024, truncation=True, return_tensors=\"pt\")\n",
" summary_ids = model.generate(inputs[\"input_ids\"], num_beams=2, min_length=10, max_length=50)\n",
" summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]\n",
" summary = summary.replace(\"I\", \"he/she\").replace(\"my\", \"his/her\").replace(\"me\", \"him/her\")\n",
"\n",
" # Extract keywords\n",
" inputs_keywords = tokenizer_keywords([review], max_length=1024, truncation=True, return_tensors=\"pt\")\n",
" summary_ids_keywords = model_keywords.generate(inputs_keywords[\"input_ids\"], num_beams=2, min_length=0, max_length=100)\n",
" keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]\n",
"\n",
" # Determine sentiment\n",
" sentiment = classifier(review)[0]['label']\n",
" sentiment_label = \"Positive\" if sentiment == \"LABEL_4\" or sentiment == \"LABEL_5\" else \"Negative\" if sentiment == \"LABEL_1\" or sentiment == \"LABEL_2\" else \"Neutral\"\n",
"\n",
" return rating, summary, keywords, sentiment_label\n",
"\n",
"# Function to count rows in the filtered DataFrame\n",
"def count_rows(filtered_df):\n",
" return len(filtered_df)\n",
"\n",
"# Function to plot ratings\n",
"def plot_ratings(ratings):\n",
" plt.figure(figsize=(10, 5))\n",
" plt.hist(ratings, bins=range(1, 7), edgecolor='black', align='left')\n",
" plt.xlabel('Rating')\n",
" plt.ylabel('Frequency')\n",
" plt.title('Distribution of Ratings')\n",
" plt.xticks(range(1, 6))\n",
" plt.grid(True)\n",
" plt.savefig('ratings_distribution.png')\n",
" return 'ratings_distribution.png'\n",
"\n",
"# Function to plot sentiments\n",
"def plot_sentiments(sentiments):\n",
" sentiment_counts = pd.Series(sentiments).value_counts()\n",
" plt.figure(figsize=(10, 5))\n",
" sentiment_counts.plot(kind='bar', color=['green', 'red', 'blue'])\n",
" plt.xlabel('Sentiment')\n",
" plt.ylabel('Frequency')\n",
" plt.title('Distribution of Sentiments')\n",
" plt.grid(True)\n",
" plt.savefig('sentiments_distribution.png')\n",
" return 'sentiments_distribution.png'\n",
"\n",
"# Gradio interface\n",
"with gr.Blocks(theme=theme) as demo:\n",
" gr.Markdown(\"<h1 style='text-align: center;'>Feedback and Auditing Survey AI Analyzer</h1><br>\")\n",
" with gr.Tabs():\n",
" with gr.TabItem(\"Upload and Filter\"):\n",
" with gr.Row():\n",
" with gr.Column(scale=1):\n",
" excel_file = gr.File(label=\"Upload Excel File\")\n",
" #excel_file = gr.File(label=\"Upload Excel File\", file_types=[\".xlsx\", \".xlsm\", \".xltx\", \".xltm\"])\n",
" keywords_input = gr.Textbox(label=\"Filter by Keywords (comma-separated)\")\n",
" display_button = gr.Button(\"Display and Filter Excel Data\")\n",
" clear_button_upload = gr.Button(\"Clear\")\n",
" row_count = gr.Textbox(label=\"Number of Rows\", interactive=False)\n",
" with gr.Column(scale=3):\n",
" filtered_data = gr.Dataframe(label=\"Filtered Excel Contents\")\n",
" \n",
" with gr.TabItem(\"Calculate Results\"):\n",
" with gr.Row():\n",
" with gr.Column():\n",
" overall_rating = gr.Textbox(label=\"Overall Rating\")\n",
" summary = gr.Textbox(label=\"Summary\")\n",
" keywords_output = gr.Textbox(label=\"Keywords\")\n",
" overall_sentiment = gr.Textbox(label=\"Overall Sentiment\")\n",
" calculate_button = gr.Button(\"Calculate Results\")\n",
" with gr.Column():\n",
" ratings_graph = gr.Image(label=\"Ratings Distribution\")\n",
" sentiments_graph = gr.Image(label=\"Sentiments Distribution\")\n",
" calculate_graph_button = gr.Button(\"Calculate Graph Results\")\n",
" \n",
" with gr.TabItem(\"Testing Area / Write a Review\"):\n",
" with gr.Row():\n",
" with gr.Column(scale=2):\n",
" review_input = gr.Textbox(label=\"Write your review here\")\n",
" analyze_button = gr.Button(\"Analyze Review\")\n",
" clear_button_review = gr.Button(\"Clear\")\n",
" with gr.Column(scale=2):\n",
" review_rating = gr.Textbox(label=\"Rating\")\n",
" review_summary = gr.Textbox(label=\"Summary\")\n",
" review_keywords = gr.Textbox(label=\"Keywords\")\n",
" review_sentiment = gr.Textbox(label=\"Sentiment\")\n",
"\n",
" display_button.click(lambda file, keywords: (filter_xl(file, keywords), count_rows(filter_xl(file, keywords))), inputs=[excel_file, keywords_input], outputs=[filtered_data, row_count])\n",
" calculate_graph_button.click(lambda file, keywords: (*calculate_results(file, keywords)[:4], plot_ratings(calculate_results(file, keywords)[4]), plot_sentiments(calculate_results(file, keywords)[5])), inputs=[excel_file, keywords_input], outputs=[overall_rating, summary, keywords_output, overall_sentiment, ratings_graph, sentiments_graph])\n",
" calculate_button.click(lambda file, keywords: (*calculate_results(file, keywords)[:4], plot_ratings(calculate_results(file, keywords)[4])), inputs=[excel_file, keywords_input], outputs=[overall_rating, summary, keywords_output, overall_sentiment])\n",
" analyze_button.click(analyze_review, inputs=review_input, outputs=[review_rating, review_summary, review_keywords, review_sentiment])\n",
" clear_button_upload.click(lambda: (\"\"), outputs=[keywords_input])\n",
" clear_button_review.click(lambda: (\"\", \"\", \"\", \"\", \"\"), outputs=[review_input, review_rating, review_summary, review_keywords, review_sentiment])\n",
"\n",
"demo.launch(share=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "SolutionsInPR",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|