import gradio as gr import pandas as pd from prophet import Prophet import plotly.graph_objs as go import numpy as np # Function to replace null values with average def replace_null_with_avg_values(df, column_name): df[column_name] = pd.to_numeric(df[column_name], errors='coerce') avg_value = round(df[column_name].mean(), 1) df[column_name].fillna(avg_value, inplace=True) # Load and process the data broiler_data = pd.read_csv('Broiler market price.csv') replace_null_with_avg_values(broiler_data, 'DOC') replace_null_with_avg_values(broiler_data, 'Farm Rate') replace_null_with_avg_values(broiler_data, 'Open') replace_null_with_avg_values(broiler_data, 'Close') broiler_data['Date'] = pd.to_datetime(broiler_data['Date']) # Prepare dataframes for Prophet models farm_rate_df = broiler_data[['Date', 'Farm Rate', 'DOC']].rename(columns={'Date': 'ds', 'Farm Rate': 'y', 'DOC': 'DOC'}) open_rate_df = broiler_data[['Date', 'Open', 'DOC']].rename(columns={'Date': 'ds', 'Open': 'y', 'DOC': 'DOC'}) close_rate_df = broiler_data[['Date', 'Close', 'DOC']].rename(columns={'Date': 'ds', 'Close': 'y', 'DOC': 'DOC'}) # Initialize Prophet models farm_rate_model = Prophet(growth='linear', yearly_seasonality=True, daily_seasonality=True) open_rate_model = Prophet(growth='linear', yearly_seasonality=True, daily_seasonality=True) close_rate_model = Prophet(growth='linear', yearly_seasonality=True, daily_seasonality=True) # Add DOC regressor and holidays farm_rate_model.add_regressor('DOC') open_rate_model.add_regressor('DOC') close_rate_model.add_regressor('DOC') farm_rate_model.add_country_holidays(country_name='PAK') open_rate_model.add_country_holidays(country_name='PAK') close_rate_model.add_country_holidays(country_name='PAK') # Fit the models farm_rate_model.fit(farm_rate_df) open_rate_model.fit(open_rate_df) close_rate_model.fit(close_rate_df) # Function to generate predictions based on DOC range and selected days def predict_values(start_doc, end_doc, days_option): # Generate future dataframes farm_future_rate = farm_rate_model.make_future_dataframe(periods=days_option, freq='D') open_future_rate = open_rate_model.make_future_dataframe(periods=days_option, freq='D') close_future_rate = close_rate_model.make_future_dataframe(periods=days_option, freq='D') # Generate DOC values within the specified range doc_values = np.linspace(start_doc, end_doc, num=days_option) # Generate DOC values for the number of days # Assign the generated DOC values to the future dataframes farm_future_rate['DOC'] = doc_values open_future_rate['DOC'] = doc_values close_future_rate['DOC'] = doc_values # Make predictions farm_forecast_rate = farm_rate_model.predict(farm_future_rate) open_forecast_rate = open_rate_model.predict(open_future_rate) close_forecast_rate = close_rate_model.predict(close_future_rate) # Filter to get only the future predictions (last `days_option` days) farm_output = farm_forecast_rate[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(days_option).copy() farm_output['DOC'] = np.round(doc_values, 1) # Round DOC values open_output = open_forecast_rate[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(days_option).copy() open_output['DOC'] = np.round(doc_values, 1) # Round DOC values close_output = close_forecast_rate[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(days_option).copy() close_output['DOC'] = np.round(doc_values, 1) # Round DOC values # Create Plotly graphs fig_farm = go.Figure() fig_farm.add_trace(go.Scatter(x=farm_forecast_rate['ds'], y=farm_forecast_rate['yhat'].round(1), mode='lines+markers', name='Farm Rate Prediction')) fig_farm.update_layout(title='Farm Rate Predictions over Time', xaxis_title='Date', yaxis_title='Predicted Farm Rate') fig_open = go.Figure() fig_open.add_trace(go.Scatter(x=open_forecast_rate['ds'], y=open_forecast_rate['yhat'].round(1), mode='lines+markers', name='Open Rate Prediction')) fig_open.update_layout(title='Open Rate Predictions over Time', xaxis_title='Date', yaxis_title='Predicted Open Rate') fig_close = go.Figure() fig_close.add_trace(go.Scatter(x=close_forecast_rate['ds'], y=close_forecast_rate['yhat'].round(1), mode='lines+markers', name='Close Rate Prediction')) fig_close.update_layout(title='Close Rate Predictions over Time', xaxis_title='Date', yaxis_title='Predicted Close Rate') return farm_output, open_output, close_output, fig_farm, fig_open, fig_close # Define Gradio interface def interface(start_doc, end_doc, days_option): # Check if a valid selection is made if days_option is None: return "Please select a valid option for days.", None, None, None, None, None days_map = {'7 days': 7, '10 days': 10, '15 days': 15, '40 days': 40} days_selected = days_map.get(days_option, 7) # Default to 7 days if no valid option is provided results_farm, results_open, results_close, plot_farm, plot_open, plot_close = predict_values(start_doc, end_doc, days_selected) return results_farm, results_open, results_close, plot_farm, plot_open, plot_close # Create Gradio inputs and outputs start_doc_input = gr.components.Number(label="Start DOC Value") end_doc_input = gr.components.Number(label="End DOC Value") days_dropdown = gr.components.Dropdown(choices=['7 days', '10 days', '15 days', '40 days'], label="Select Number of Days", value='7 days') # Define output components output_table_farm = gr.components.Dataframe(label="Predicted Farm Rate Values") output_table_open = gr.components.Dataframe(label="Predicted Open Rate Values") output_table_close = gr.components.Dataframe(label="Predicted Close Rate Values") output_plot_farm = gr.components.Plot(label="Farm Rate Predictions") output_plot_open = gr.components.Plot(label="Open Rate Predictions") output_plot_close = gr.components.Plot(label="Close Rate Predictions") # Set up Gradio interface gr.Interface( fn=interface, inputs=[start_doc_input, end_doc_input, days_dropdown], outputs=[output_table_farm, output_table_open, output_table_close, output_plot_farm, output_plot_open, output_plot_close], title="Farm Rate Prediction Tool", description="Enter DOC range and select the number of days to generate predictions and plot." ).launch(debug=True)