Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from prophet import Prophet
|
4 |
+
import plotly.graph_objs as go
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Function to replace null values with average
|
8 |
+
def replace_null_with_avg_values(df, column_name):
|
9 |
+
df[column_name] = pd.to_numeric(df[column_name], errors='coerce')
|
10 |
+
avg_value = round(df[column_name].mean(), 1)
|
11 |
+
df[column_name].fillna(avg_value, inplace=True)
|
12 |
+
|
13 |
+
# Load and process the data
|
14 |
+
broiler_data = pd.read_csv('Broiler market price.csv')
|
15 |
+
replace_null_with_avg_values(broiler_data, 'DOC')
|
16 |
+
replace_null_with_avg_values(broiler_data, 'Farm Rate')
|
17 |
+
replace_null_with_avg_values(broiler_data, 'Open')
|
18 |
+
replace_null_with_avg_values(broiler_data, 'Close')
|
19 |
+
|
20 |
+
broiler_data['Date'] = pd.to_datetime(broiler_data['Date'])
|
21 |
+
|
22 |
+
# Prepare dataframes for Prophet models
|
23 |
+
farm_rate_df = broiler_data[['Date', 'Farm Rate', 'DOC']].rename(columns={'Date': 'ds', 'Farm Rate': 'y', 'DOC': 'DOC'})
|
24 |
+
open_rate_df = broiler_data[['Date', 'Open', 'DOC']].rename(columns={'Date': 'ds', 'Open': 'y', 'DOC': 'DOC'})
|
25 |
+
close_rate_df = broiler_data[['Date', 'Close', 'DOC']].rename(columns={'Date': 'ds', 'Close': 'y', 'DOC': 'DOC'})
|
26 |
+
|
27 |
+
# Initialize Prophet models
|
28 |
+
farm_rate_model = Prophet(growth='linear', yearly_seasonality=True, daily_seasonality=True)
|
29 |
+
open_rate_model = Prophet(growth='linear', yearly_seasonality=True, daily_seasonality=True)
|
30 |
+
close_rate_model = Prophet(growth='linear', yearly_seasonality=True, daily_seasonality=True)
|
31 |
+
|
32 |
+
# Add DOC regressor and holidays
|
33 |
+
farm_rate_model.add_regressor('DOC')
|
34 |
+
open_rate_model.add_regressor('DOC')
|
35 |
+
close_rate_model.add_regressor('DOC')
|
36 |
+
farm_rate_model.add_country_holidays(country_name='PAK')
|
37 |
+
open_rate_model.add_country_holidays(country_name='PAK')
|
38 |
+
close_rate_model.add_country_holidays(country_name='PAK')
|
39 |
+
|
40 |
+
# Fit the models
|
41 |
+
farm_rate_model.fit(farm_rate_df)
|
42 |
+
open_rate_model.fit(open_rate_df)
|
43 |
+
close_rate_model.fit(close_rate_df)
|
44 |
+
|
45 |
+
# Function to generate predictions based on DOC range and selected days
|
46 |
+
def predict_values(start_doc, end_doc, days_option):
|
47 |
+
# Generate future dataframes
|
48 |
+
farm_future_rate = farm_rate_model.make_future_dataframe(periods=days_option, freq='D')
|
49 |
+
open_future_rate = open_rate_model.make_future_dataframe(periods=days_option, freq='D')
|
50 |
+
close_future_rate = close_rate_model.make_future_dataframe(periods=days_option, freq='D')
|
51 |
+
|
52 |
+
# Generate DOC values within the specified range
|
53 |
+
doc_values = np.linspace(start_doc, end_doc, num=len(farm_future_rate)) # Adjusted line
|
54 |
+
|
55 |
+
# Assign the generated DOC values to the future dataframes
|
56 |
+
farm_future_rate['DOC'] = doc_values
|
57 |
+
open_future_rate['DOC'] = doc_values
|
58 |
+
close_future_rate['DOC'] = doc_values
|
59 |
+
|
60 |
+
# Make predictions
|
61 |
+
farm_forecast_rate = farm_rate_model.predict(farm_future_rate)
|
62 |
+
open_forecast_rate = open_rate_model.predict(open_future_rate)
|
63 |
+
close_forecast_rate = close_rate_model.predict(close_future_rate)
|
64 |
+
|
65 |
+
# Filter to get only the future predictions (last `days_option` days)
|
66 |
+
farm_output = farm_forecast_rate[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(days_option).copy()
|
67 |
+
farm_output['DOC'] = farm_future_rate['DOC'].tail(days_option)
|
68 |
+
|
69 |
+
open_output = open_forecast_rate[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(days_option).copy()
|
70 |
+
open_output['DOC'] = open_future_rate['DOC'].tail(days_option)
|
71 |
+
|
72 |
+
close_output = close_forecast_rate[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(days_option).copy()
|
73 |
+
close_output['DOC'] = close_future_rate['DOC'].tail(days_option)
|
74 |
+
|
75 |
+
# Create Plotly graphs
|
76 |
+
fig_farm = go.Figure()
|
77 |
+
fig_farm.add_trace(go.Scatter(x=farm_forecast_rate['ds'], y=farm_forecast_rate['yhat'], mode='lines+markers', name='Farm Rate Prediction'))
|
78 |
+
fig_farm.update_layout(title='Farm Rate Predictions over Time', xaxis_title='Date', yaxis_title='Predicted Farm Rate')
|
79 |
+
|
80 |
+
fig_open = go.Figure()
|
81 |
+
fig_open.add_trace(go.Scatter(x=open_forecast_rate['ds'], y=open_forecast_rate['yhat'], mode='lines+markers', name='Open Rate Prediction'))
|
82 |
+
fig_open.update_layout(title='Open Rate Predictions over Time', xaxis_title='Date', yaxis_title='Predicted Open Rate')
|
83 |
+
|
84 |
+
fig_close = go.Figure()
|
85 |
+
fig_close.add_trace(go.Scatter(x=close_forecast_rate['ds'], y=close_forecast_rate['yhat'], mode='lines+markers', name='Close Rate Prediction'))
|
86 |
+
fig_close.update_layout(title='Close Rate Predictions over Time', xaxis_title='Date', yaxis_title='Predicted Close Rate')
|
87 |
+
|
88 |
+
return farm_output, open_output, close_output, fig_farm, fig_open, fig_close
|
89 |
+
|
90 |
+
# Define Gradio interface
|
91 |
+
def interface(start_doc, end_doc, days_option):
|
92 |
+
# Check if a valid selection is made
|
93 |
+
if days_option is None:
|
94 |
+
return "Please select a valid option for days.", None, None, None, None, None
|
95 |
+
|
96 |
+
days_map = {'7 days': 7, '10 days': 10, '15 days': 15}
|
97 |
+
days_selected = days_map.get(days_option, 7) # Default to 7 days if no valid option is provided
|
98 |
+
results_farm, results_open, results_close, plot_farm, plot_open, plot_close = predict_values(start_doc, end_doc, days_selected)
|
99 |
+
return results_farm, results_open, results_close, plot_farm, plot_open, plot_close
|
100 |
+
|
101 |
+
# Create Gradio inputs and outputs
|
102 |
+
start_doc_input = gr.components.Number(label="Start DOC Value")
|
103 |
+
end_doc_input = gr.components.Number(label="End DOC Value")
|
104 |
+
days_dropdown = gr.components.Dropdown(choices=['7 days', '10 days', '15 days'], label="Select Number of Days",value='7 days')
|
105 |
+
|
106 |
+
# Define output components
|
107 |
+
output_table_farm = gr.components.Dataframe(label="Predicted Farm Rate Values")
|
108 |
+
output_table_open = gr.components.Dataframe(label="Predicted Open Rate Values")
|
109 |
+
output_table_close = gr.components.Dataframe(label="Predicted Close Rate Values")
|
110 |
+
output_plot_farm = gr.components.Plot(label="Farm Rate Predictions")
|
111 |
+
output_plot_open = gr.components.Plot(label="Open Rate Predictions")
|
112 |
+
output_plot_close = gr.components.Plot(label="Close Rate Predictions")
|
113 |
+
|
114 |
+
# Set up Gradio interface
|
115 |
+
gr.Interface(
|
116 |
+
fn=interface,
|
117 |
+
inputs=[start_doc_input, end_doc_input, days_dropdown],
|
118 |
+
outputs=[output_table_farm, output_table_open, output_table_close, output_plot_farm, output_plot_open, output_plot_close],
|
119 |
+
title="Farm Rate Prediction Tool",
|
120 |
+
description="Enter DOC range and select the number of days to generate predictions and plot."
|
121 |
+
).launch(debug=True)
|