Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -31,7 +31,6 @@ iface = gr.Interface(
|
|
31 |
)
|
32 |
|
33 |
iface.launch()
|
34 |
-
"""
|
35 |
from transformers import pipeline, MBartTokenizer
|
36 |
import gradio as gr
|
37 |
|
@@ -48,3 +47,39 @@ def convert_to_casual_hindi(text):
|
|
48 |
# Gradio interface for deployment in Hugging Face Spaces
|
49 |
iface = gr.Interface(fn=convert_to_casual_hindi, inputs="text", outputs="text", title="Formal to Casual Hindi Converter")
|
50 |
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
)
|
32 |
|
33 |
iface.launch()
|
|
|
34 |
from transformers import pipeline, MBartTokenizer
|
35 |
import gradio as gr
|
36 |
|
|
|
47 |
# Gradio interface for deployment in Hugging Face Spaces
|
48 |
iface = gr.Interface(fn=convert_to_casual_hindi, inputs="text", outputs="text", title="Formal to Casual Hindi Converter")
|
49 |
iface.launch()
|
50 |
+
"""
|
51 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
52 |
+
import gradio as gr
|
53 |
+
|
54 |
+
# Load a multilingual T5 model pre-trained for Hindi
|
55 |
+
model_name = "google/mt5-base" # mT5-base works well for Hindi
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
57 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
58 |
+
|
59 |
+
def formal_to_casual_hindi(input_text):
|
60 |
+
"""
|
61 |
+
Converts formal Hindi text into conversational Hindi using mT5.
|
62 |
+
"""
|
63 |
+
# Prepare the input for conversational reformulation
|
64 |
+
prompt = f"Convert the following formal Hindi text to casual spoken Hindi: {input_text}"
|
65 |
+
|
66 |
+
# Tokenize input
|
67 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
68 |
+
|
69 |
+
# Generate conversational text
|
70 |
+
outputs = model.generate(input_ids, max_length=128, num_beams=5, early_stopping=True)
|
71 |
+
|
72 |
+
# Decode the output
|
73 |
+
casual_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
74 |
+
return casual_text
|
75 |
+
|
76 |
+
# Gradio interface for the deployment
|
77 |
+
iface = gr.Interface(
|
78 |
+
fn=formal_to_casual_hindi,
|
79 |
+
inputs="text",
|
80 |
+
outputs="text",
|
81 |
+
title="Formal to Casual Hindi Converter",
|
82 |
+
description="Convert formal Hindi text into conversational Hindi using AI."
|
83 |
+
)
|
84 |
+
|
85 |
+
iface.launch()
|