Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,62 +1,27 @@
|
|
| 1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
-
# Load the Open-Source LLM (e.g., BLOOM or Falcon)
|
| 5 |
-
model_name = "tiiuae/falcon-7b-instruct" # Replace with your desired model
|
| 6 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 7 |
-
model = AutoModelForCausalLM.from_pretrained(model_name,
|
| 8 |
-
device_map="auto", # Automatically allocates model to available devices
|
| 9 |
-
torch_dtype=torch.float16 # Use reduced precision to save memory
|
| 10 |
-
)
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def convert_to_spoken_hindi(formal_hindi_text):
|
| 17 |
-
""
|
| 18 |
-
Convert formal Hindi text to spoken Hindi using an open-source LLM.
|
| 19 |
-
"""
|
| 20 |
-
# Define the prompt
|
| 21 |
-
prompt = (
|
| 22 |
-
"Convert the following formal Hindi text into conversational spoken Hindi:\n\n"
|
| 23 |
-
f"Formal Hindi: {formal_hindi_text}\n\n"
|
| 24 |
-
"Spoken Hindi:"
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
# Tokenize the input and create an attention mask
|
| 28 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
| 29 |
-
input_ids = inputs["input_ids"]
|
| 30 |
-
attention_mask = inputs["attention_mask"]
|
| 31 |
-
|
| 32 |
-
# Generate the response
|
| 33 |
outputs = model.generate(
|
| 34 |
-
input_ids
|
| 35 |
-
attention_mask=attention_mask,
|
| 36 |
-
max_length=150,
|
| 37 |
-
num_beams=5,
|
| 38 |
-
temperature=0.7
|
| 39 |
-
pad_token_id=tokenizer.pad_token_id # Avoid warnings
|
| 40 |
)
|
| 41 |
-
|
| 42 |
-
# Decode the generated text
|
| 43 |
spoken_hindi = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 44 |
-
|
| 45 |
-
# Extract the relevant output (after "Spoken Hindi:")
|
| 46 |
-
if "Spoken Hindi:" in spoken_hindi:
|
| 47 |
-
spoken_hindi = spoken_hindi.split("Spoken Hindi:")[-1].strip()
|
| 48 |
-
|
| 49 |
-
return spoken_hindi
|
| 50 |
-
|
| 51 |
-
# Example Input
|
| 52 |
-
formal_hindi_text = "आपका स्वास्थ्य अच्छा रहे, इस बात का ध्यान रखें। क्या आप ठीक से भोजन कर रहे हैं?"
|
| 53 |
-
|
| 54 |
-
# Convert to Spoken Hindi
|
| 55 |
-
#spoken_hindi_text = convert_to_spoken_hindi(formal_hindi_text)
|
| 56 |
-
|
| 57 |
-
# Print the results
|
| 58 |
-
print("Formal Hindi Text:", formal_hindi_text)
|
| 59 |
-
#print("Spoken Hindi Text:", spoken_hindi_text)
|
| 60 |
|
| 61 |
iface = gr.Interface(
|
| 62 |
fn=convert_to_spoken_hindi,
|
|
@@ -64,4 +29,5 @@ iface = gr.Interface(
|
|
| 64 |
outputs="text",
|
| 65 |
title="Hindi Text Converter"
|
| 66 |
)
|
|
|
|
| 67 |
iface.launch()
|
|
|
|
| 1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
model_name = "tiiuae/falcon-7b-instruct"
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 8 |
+
model_name,
|
| 9 |
+
device_map="auto",
|
| 10 |
+
torch_dtype=torch.float16
|
| 11 |
+
)
|
| 12 |
|
| 13 |
def convert_to_spoken_hindi(formal_hindi_text):
|
| 14 |
+
prompt = f"Convert the following formal Hindi text into conversational spoken Hindi:\n\nFormal Hindi: {formal_hindi_text}\n\nSpoken Hindi:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
outputs = model.generate(
|
| 17 |
+
inputs["input_ids"],
|
| 18 |
+
attention_mask=inputs["attention_mask"],
|
| 19 |
+
max_length=150,
|
| 20 |
+
num_beams=5,
|
| 21 |
+
temperature=0.7
|
|
|
|
| 22 |
)
|
|
|
|
|
|
|
| 23 |
spoken_hindi = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 24 |
+
return spoken_hindi.split("Spoken Hindi:")[-1].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
iface = gr.Interface(
|
| 27 |
fn=convert_to_spoken_hindi,
|
|
|
|
| 29 |
outputs="text",
|
| 30 |
title="Hindi Text Converter"
|
| 31 |
)
|
| 32 |
+
|
| 33 |
iface.launch()
|