Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import contextlib | |
| import joblib | |
| from typing import Union | |
| from loguru import _Logger, logger | |
| from itertools import chain | |
| import torch | |
| from yacs.config import CfgNode as CN | |
| from pytorch_lightning.utilities import rank_zero_only | |
| def lower_config(yacs_cfg): | |
| if not isinstance(yacs_cfg, CN): | |
| return yacs_cfg | |
| return {k.lower(): lower_config(v) for k, v in yacs_cfg.items()} | |
| def upper_config(dict_cfg): | |
| if not isinstance(dict_cfg, dict): | |
| return dict_cfg | |
| return {k.upper(): upper_config(v) for k, v in dict_cfg.items()} | |
| def log_on(condition, message, level): | |
| if condition: | |
| assert level in ['INFO', 'DEBUG', 'WARNING', 'ERROR', 'CRITICAL'] | |
| logger.log(level, message) | |
| def get_rank_zero_only_logger(logger: _Logger): | |
| if rank_zero_only.rank == 0: | |
| return logger | |
| else: | |
| for _level in logger._core.levels.keys(): | |
| level = _level.lower() | |
| setattr(logger, level, | |
| lambda x: None) | |
| logger._log = lambda x: None | |
| return logger | |
| def setup_gpus(gpus: Union[str, int]) -> int: | |
| """ A temporary fix for pytorch-lighting 1.3.x """ | |
| gpus = str(gpus) | |
| gpu_ids = [] | |
| if ',' not in gpus: | |
| n_gpus = int(gpus) | |
| return n_gpus if n_gpus != -1 else torch.cuda.device_count() | |
| else: | |
| gpu_ids = [i.strip() for i in gpus.split(',') if i != ''] | |
| # setup environment variables | |
| visible_devices = os.getenv('CUDA_VISIBLE_DEVICES') | |
| if visible_devices is None: | |
| os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | |
| os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(i) for i in gpu_ids) | |
| visible_devices = os.getenv('CUDA_VISIBLE_DEVICES') | |
| logger.warning(f'[Temporary Fix] manually set CUDA_VISIBLE_DEVICES when specifying gpus to use: {visible_devices}') | |
| else: | |
| logger.warning('[Temporary Fix] CUDA_VISIBLE_DEVICES already set by user or the main process.') | |
| return len(gpu_ids) | |
| def flattenList(x): | |
| return list(chain(*x)) | |
| def tqdm_joblib(tqdm_object): | |
| """Context manager to patch joblib to report into tqdm progress bar given as argument | |
| Usage: | |
| with tqdm_joblib(tqdm(desc="My calculation", total=10)) as progress_bar: | |
| Parallel(n_jobs=16)(delayed(sqrt)(i**2) for i in range(10)) | |
| When iterating over a generator, directly use of tqdm is also a solutin (but monitor the task queuing, instead of finishing) | |
| ret_vals = Parallel(n_jobs=args.world_size)( | |
| delayed(lambda x: _compute_cov_score(pid, *x))(param) | |
| for param in tqdm(combinations(image_ids, 2), | |
| desc=f'Computing cov_score of [{pid}]', | |
| total=len(image_ids)*(len(image_ids)-1)/2)) | |
| Src: https://stackoverflow.com/a/58936697 | |
| """ | |
| class TqdmBatchCompletionCallback(joblib.parallel.BatchCompletionCallBack): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| def __call__(self, *args, **kwargs): | |
| tqdm_object.update(n=self.batch_size) | |
| return super().__call__(*args, **kwargs) | |
| old_batch_callback = joblib.parallel.BatchCompletionCallBack | |
| joblib.parallel.BatchCompletionCallBack = TqdmBatchCompletionCallback | |
| try: | |
| yield tqdm_object | |
| finally: | |
| joblib.parallel.BatchCompletionCallBack = old_batch_callback | |
| tqdm_object.close() | |