Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import sys | |
| import cv2 | |
| from pathlib import Path | |
| import numpy as np | |
| import torch | |
| import torch.utils.data as data | |
| from tqdm import tqdm | |
| from copy import deepcopy | |
| from torchvision.transforms import ToTensor | |
| sys.path.append(os.path.join(os.path.dirname(__file__), '..')) | |
| from alike import ALike, configs | |
| dataset_root = 'hseq/hpatches-sequences-release' | |
| use_cuda = torch.cuda.is_available() | |
| device = 'cuda' if use_cuda else 'cpu' | |
| methods = ['alike-n', 'alike-l', 'alike-n-ms', 'alike-l-ms'] | |
| class HPatchesDataset(data.Dataset): | |
| def __init__(self, root: str = dataset_root, alteration: str = 'all'): | |
| """ | |
| Args: | |
| root: dataset root path | |
| alteration: # 'all', 'i' for illumination or 'v' for viewpoint | |
| """ | |
| assert (Path(root).exists()), f"Dataset root path {root} dose not exist!" | |
| self.root = root | |
| # get all image file name | |
| self.image0_list = [] | |
| self.image1_list = [] | |
| self.homographies = [] | |
| folders = [x for x in Path(self.root).iterdir() if x.is_dir()] | |
| self.seqs = [] | |
| for folder in folders: | |
| if alteration == 'i' and folder.stem[0] != 'i': | |
| continue | |
| if alteration == 'v' and folder.stem[0] != 'v': | |
| continue | |
| self.seqs.append(folder) | |
| self.len = len(self.seqs) | |
| assert (self.len > 0), f'Can not find PatchDataset in path {self.root}' | |
| def __getitem__(self, item): | |
| folder = self.seqs[item] | |
| imgs = [] | |
| homos = [] | |
| for i in range(1, 7): | |
| img = cv2.imread(str(folder / f'{i}.ppm'), cv2.IMREAD_COLOR) | |
| img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # HxWxC | |
| imgs.append(img) | |
| if i != 1: | |
| homo = np.loadtxt(str(folder / f'H_1_{i}')).astype('float32') | |
| homos.append(homo) | |
| return imgs, homos, folder.stem | |
| def __len__(self): | |
| return self.len | |
| def name(self): | |
| return self.__class__ | |
| def extract_multiscale(model, img, scale_f=2 ** 0.5, | |
| min_scale=1., max_scale=1., | |
| min_size=0., max_size=99999., | |
| image_size_max=99999, | |
| n_k=0, sort=False): | |
| H_, W_, three = img.shape | |
| assert three == 3, "input image shape should be [HxWx3]" | |
| old_bm = torch.backends.cudnn.benchmark | |
| torch.backends.cudnn.benchmark = False # speedup | |
| # ==================== image size constraint | |
| image = deepcopy(img) | |
| max_hw = max(H_, W_) | |
| if max_hw > image_size_max: | |
| ratio = float(image_size_max / max_hw) | |
| image = cv2.resize(image, dsize=None, fx=ratio, fy=ratio) | |
| # ==================== convert image to tensor | |
| H, W, three = image.shape | |
| image = ToTensor()(image).unsqueeze(0) | |
| image = image.to(device) | |
| s = 1.0 # current scale factor | |
| keypoints, descriptors, scores, scores_maps, descriptor_maps = [], [], [], [], [] | |
| while s + 0.001 >= max(min_scale, min_size / max(H, W)): | |
| if s - 0.001 <= min(max_scale, max_size / max(H, W)): | |
| nh, nw = image.shape[2:] | |
| # extract descriptors | |
| with torch.no_grad(): | |
| descriptor_map, scores_map = model.extract_dense_map(image) | |
| keypoints_, descriptors_, scores_, _ = model.dkd(scores_map, descriptor_map) | |
| keypoints.append(keypoints_[0]) | |
| descriptors.append(descriptors_[0]) | |
| scores.append(scores_[0]) | |
| s /= scale_f | |
| # down-scale the image for next iteration | |
| nh, nw = round(H * s), round(W * s) | |
| image = torch.nn.functional.interpolate(image, (nh, nw), mode='bilinear', align_corners=False) | |
| # restore value | |
| torch.backends.cudnn.benchmark = old_bm | |
| keypoints = torch.cat(keypoints) | |
| descriptors = torch.cat(descriptors) | |
| scores = torch.cat(scores) | |
| keypoints = (keypoints + 1) / 2 * keypoints.new_tensor([[W_ - 1, H_ - 1]]) | |
| if sort or 0 < n_k < len(keypoints): | |
| indices = torch.argsort(scores, descending=True) | |
| keypoints = keypoints[indices] | |
| descriptors = descriptors[indices] | |
| scores = scores[indices] | |
| if 0 < n_k < len(keypoints): | |
| keypoints = keypoints[0:n_k] | |
| descriptors = descriptors[0:n_k] | |
| scores = scores[0:n_k] | |
| return {'keypoints': keypoints, 'descriptors': descriptors, 'scores': scores} | |
| def extract_method(m): | |
| hpatches = HPatchesDataset(root=dataset_root, alteration='all') | |
| model = m[:7] | |
| min_scale = 0.3 if m[8:] == 'ms' else 1.0 | |
| model = ALike(**configs[model], device=device, top_k=0, scores_th=0.2, n_limit=5000) | |
| progbar = tqdm(hpatches, desc='Extracting for {}'.format(m)) | |
| for imgs, homos, seq_name in progbar: | |
| for i in range(1, 7): | |
| img = imgs[i - 1] | |
| pred = extract_multiscale(model, img, min_scale=min_scale, max_scale=1, sort=False, n_k=5000) | |
| kpts, descs, scores = pred['keypoints'], pred['descriptors'], pred['scores'] | |
| with open(os.path.join(dataset_root, seq_name, f'{i}.ppm.{m}'), 'wb') as f: | |
| np.savez(f, keypoints=kpts.cpu().numpy(), | |
| scores=scores.cpu().numpy(), | |
| descriptors=descs.cpu().numpy()) | |
| if __name__ == '__main__': | |
| for method in methods: | |
| extract_method(method) | |