Spaces:
Build error
Build error
# Imports | |
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple,Dict | |
import random | |
class_names=["pissa", "steak", "sushi"] | |
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=3) | |
effnetb2.load_state_dict( | |
torch.load(f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth", | |
map_location=torch.device("cpu") | |
) | |
) | |
#Predict fn | |
def predict(img): | |
start_time = timer() | |
img = effnetb2_transforms(img).unsqueeze(0) | |
effnetb2.eval() | |
with torch.inference_mode(): | |
preds = torch.softmax(effnetb2(img), dim=1) | |
pred_labels_and_probs = {class_names[i]: float(preds[0][i]) for i in range(len(class_names))} | |
pred_time = round(timer()-start_time, 5) | |
return pred_labels_and_probs, pred_time | |
#Gradio app | |
# Create title, description and article strings | |
title = "FoodVision Mini ππ₯©π£" | |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi." | |
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)." | |
example_list = [[str(filepath)] for filepath in random.sample(test_data_paths, k=3)] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # mapping function from input to output | |
inputs=gr.Image(type="pil"), # what are the inputs? | |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs? | |
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
demo.launch() | |