Spaces:
Build error
Build error
File size: 1,967 Bytes
4a8e70b 469c8ca 4a8e70b d57b721 4a8e70b aae75ab 4a8e70b aae75ab 4a8e70b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
# Imports
import gradio as gr
import os
import torch
from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple,Dict
import random
class_names=["pissa", "steak", "sushi"]
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=3)
effnetb2.load_state_dict(
torch.load(f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
map_location=torch.device("cpu")
)
)
#Predict fn
def predict(img):
start_time = timer()
img = effnetb2_transforms(img).unsqueeze(0)
effnetb2.eval()
with torch.inference_mode():
preds = torch.softmax(effnetb2(img), dim=1)
pred_labels_and_probs = {class_names[i]: float(preds[0][i]) for i in range(len(class_names))}
pred_time = round(timer()-start_time, 5)
return pred_labels_and_probs, pred_time
#Gradio app
# Create title, description and article strings
title = "FoodVision Mini 🍕🥩🍣"
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
# Create examples list from "examples/" directory
example_list = [["examples/" + example] for example in os.listdir("examples")]
# Create the Gradio demo
demo = gr.Interface(fn=predict, # mapping function from input to output
inputs=gr.Image(type="pil"), # what are the inputs?
outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
# Create examples list from "examples/" directory
examples=example_list,
title=title,
description=description,
article=article)
demo.launch()
|