File size: 1,967 Bytes
4a8e70b
 
 
 
 
469c8ca
4a8e70b
d57b721
4a8e70b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aae75ab
 
 
 
4a8e70b
 
 
 
 
aae75ab
4a8e70b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Imports
import gradio as gr
import os
import torch
from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple,Dict
import random

class_names=["pissa", "steak", "sushi"]
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=3)
effnetb2.load_state_dict(
    torch.load(f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
               map_location=torch.device("cpu")
               )
)

#Predict fn
def predict(img):
  start_time = timer()
  img = effnetb2_transforms(img).unsqueeze(0)
  effnetb2.eval()
  with torch.inference_mode():
    preds = torch.softmax(effnetb2(img), dim=1)
  pred_labels_and_probs = {class_names[i]: float(preds[0][i]) for i in range(len(class_names))}
  pred_time = round(timer()-start_time, 5)
  return pred_labels_and_probs, pred_time

#Gradio app
# Create title, description and article strings
title = "FoodVision Mini 🍕🥩🍣"
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."

# Create examples list from "examples/" directory
example_list = [["examples/" + example] for example in os.listdir("examples")]

# Create the Gradio demo
demo = gr.Interface(fn=predict, # mapping function from input to output
                    inputs=gr.Image(type="pil"), # what are the inputs?
                    outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
                             gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
                    # Create examples list from "examples/" directory
                    examples=example_list, 
                    title=title,
                    description=description,
                    article=article)

demo.launch()