#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from abc import ABC, abstractmethod

import torch

from .multimodal_encoder.clip_encoder import CLIPVisionTower
from .multimodal_projector.builder import build_vision_projector
from .language_model.configuration_llava_phi import (
    LlavaPhiConfig,
    LlavaPhiVisionConfig,
    ProjectorConfig,
)

# from llava_phi.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"


class LlavaMetaModel:
    def __init__(self, config):
        super(LlavaMetaModel, self).__init__(config)
        self.vision_tower = CLIPVisionTower(
            LlavaPhiVisionConfig(**config.vision_config["vision_tower"])
        )
        self.mm_projector = build_vision_projector(
            ProjectorConfig(**config.vision_config["mm_projector"])
        )

    def get_vision_tower(self):
        vision_tower = getattr(self, "vision_tower", None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower


class LlavaMetaForCausalLM(ABC):
    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def encode_images(self, images):
        image_features = self.get_model().get_vision_tower()(images)
        image_features = self.get_model().mm_projector(image_features)
        return image_features

    def prepare_inputs_labels_for_multimodal(
        self, input_ids, attention_mask, past_key_values, labels, images
    ):
        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            if (
                past_key_values is not None
                and vision_tower is not None
                and images is not None
                and input_ids.shape[1] == 1
            ):
                attention_mask = torch.ones(
                    (attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1),
                    dtype=attention_mask.dtype,
                    device=attention_mask.device,
                )
            return input_ids, attention_mask, past_key_values, None, labels

        if type(images) is list or images.ndim == 5:
            concat_images = torch.cat([image for image in images], dim=0)
            image_features = self.encode_images(concat_images)
            split_sizes = [image.shape[0] for image in images]
            image_features = torch.split(image_features, split_sizes, dim=0)
            image_features = [x.flatten(0, 1) for x in image_features]
        else:
            image_features = self.encode_images(images)

        new_input_embeds = []
        new_labels = [] if labels is not None else None
        cur_image_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
            if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
                # multimodal LLM, but the current sample is not multimodal
                # FIXME: this is a hacky fix, for deepspeed zero3 to work
                half_len = cur_input_ids.shape[0] // 2
                cur_image_features = image_features[cur_image_idx]
                cur_input_embeds_1 = self.get_model().embed_tokens(
                    cur_input_ids[:half_len]
                )
                cur_input_embeds_2 = self.get_model().embed_tokens(
                    cur_input_ids[half_len:]
                )
                cur_input_embeds = torch.cat(
                    [cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2],
                    dim=0,
                )
                new_input_embeds.append(cur_input_embeds)
                if labels is not None:
                    new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                continue
            image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
            cur_new_input_embeds = []
            if labels is not None:
                cur_labels = labels[batch_idx]
                cur_new_labels = []
                assert cur_labels.shape == cur_input_ids.shape
            while image_token_indices.numel() > 0:
                cur_image_features = image_features[cur_image_idx]
                image_token_start = image_token_indices[0]
                if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
                    self.config, "mm_use_im_start_end", False
                ):
                    cur_new_input_embeds.append(
                        self.get_model()
                        .embed_tokens(cur_input_ids[: image_token_start - 1])
                        .detach()
                    )
                    cur_new_input_embeds.append(
                        self.get_model().embed_tokens(
                            cur_input_ids[image_token_start - 1 : image_token_start]
                        )
                    )
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_input_embeds.append(
                        self.get_model().embed_tokens(
                            cur_input_ids[image_token_start + 1 : image_token_start + 2]
                        )
                    )
                    if labels is not None:
                        cur_new_labels.append(cur_labels[:image_token_start])
                        cur_new_labels.append(
                            torch.full(
                                (cur_image_features.shape[0],),
                                IGNORE_INDEX,
                                device=labels.device,
                                dtype=labels.dtype,
                            )
                        )
                        cur_new_labels.append(
                            cur_labels[image_token_start : image_token_start + 1]
                        )
                        cur_labels = cur_labels[image_token_start + 2 :]
                else:
                    cur_new_input_embeds.append(
                        self.get_model().embed_tokens(cur_input_ids[:image_token_start])
                    )
                    cur_new_input_embeds.append(cur_image_features)
                    if labels is not None:
                        cur_new_labels.append(cur_labels[:image_token_start])
                        cur_new_labels.append(
                            torch.full(
                                (cur_image_features.shape[0],),
                                IGNORE_INDEX,
                                device=labels.device,
                                dtype=labels.dtype,
                            )
                        )
                        cur_labels = cur_labels[image_token_start + 1 :]
                cur_image_idx += 1
                if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
                    self.config, "mm_use_im_start_end", False
                ):
                    cur_input_ids = cur_input_ids[image_token_start + 2 :]
                else:
                    cur_input_ids = cur_input_ids[image_token_start + 1 :]
                image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
            if cur_input_ids.numel() > 0:
                if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
                    self.config, "mm_use_im_start_end", False
                ):
                    cur_new_input_embeds.append(
                        self.get_model().embed_tokens(cur_input_ids).detach()
                    )
                else:
                    cur_new_input_embeds.append(
                        self.get_model().embed_tokens(cur_input_ids)
                    )
                if labels is not None:
                    cur_new_labels.append(cur_labels)
            cur_new_input_embeds = [
                x.to(device=self.device) for x in cur_new_input_embeds
            ]
            cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
            new_input_embeds.append(cur_new_input_embeds)
            if labels is not None:
                cur_new_labels = torch.cat(cur_new_labels, dim=0)
                new_labels.append(cur_new_labels)

        if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
            max_len = max(x.shape[0] for x in new_input_embeds)

            new_input_embeds_align = []
            for cur_new_embed in new_input_embeds:
                cur_new_embed = torch.cat(
                    (
                        cur_new_embed,
                        torch.zeros(
                            (max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]),
                            dtype=cur_new_embed.dtype,
                            device=cur_new_embed.device,
                        ),
                    ),
                    dim=0,
                )
                new_input_embeds_align.append(cur_new_embed)
            new_input_embeds = torch.stack(new_input_embeds_align, dim=0)

            if labels is not None:
                new_labels_align = []
                _new_labels = new_labels
                for cur_new_label in new_labels:
                    cur_new_label = torch.cat(
                        (
                            cur_new_label,
                            torch.full(
                                (max_len - cur_new_label.shape[0],),
                                IGNORE_INDEX,
                                dtype=cur_new_label.dtype,
                                device=cur_new_label.device,
                            ),
                        ),
                        dim=0,
                    )
                    new_labels_align.append(cur_new_label)
                new_labels = torch.stack(new_labels_align, dim=0)

            if attention_mask is not None:
                new_attention_mask = []
                for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(
                    attention_mask, _new_labels, new_labels
                ):
                    new_attn_mask_pad_left = torch.full(
                        (cur_new_labels.shape[0] - labels.shape[1],),
                        True,
                        dtype=attention_mask.dtype,
                        device=attention_mask.device,
                    )
                    new_attn_mask_pad_right = torch.full(
                        (cur_new_labels_align.shape[0] - cur_new_labels.shape[0],),
                        False,
                        dtype=attention_mask.dtype,
                        device=attention_mask.device,
                    )
                    cur_new_attention_mask = torch.cat(
                        (
                            new_attn_mask_pad_left,
                            cur_attention_mask,
                            new_attn_mask_pad_right,
                        ),
                        dim=0,
                    )
                    new_attention_mask.append(cur_new_attention_mask)
                attention_mask = torch.stack(new_attention_mask, dim=0)
                assert attention_mask.shape == new_labels.shape
        else:
            new_input_embeds = torch.stack(new_input_embeds, dim=0)
            if labels is not None:
                new_labels = torch.stack(new_labels, dim=0)

            if attention_mask is not None:
                new_attn_mask_pad_left = torch.full(
                    (
                        attention_mask.shape[0],
                        new_input_embeds.shape[1] - input_ids.shape[1],
                    ),
                    True,
                    dtype=attention_mask.dtype,
                    device=attention_mask.device,
                )
                attention_mask = torch.cat(
                    (new_attn_mask_pad_left, attention_mask), dim=1
                )
                assert attention_mask.shape == new_input_embeds.shape[:2]

        return None, attention_mask, past_key_values, new_input_embeds, new_labels

    def initialize_vision_tokenizer(self, model_args, tokenizer):
        if model_args.mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

        if model_args.mm_use_im_start_end:
            num_new_tokens = tokenizer.add_tokens(
                [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
            )
            self.resize_token_embeddings(len(tokenizer))

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True
                )
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True
                )

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False

        elif model_args.mm_use_im_patch_token:
            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = False
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False