Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,8 +14,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
|
| 14 |
import PyPDF2
|
| 15 |
import traceback
|
| 16 |
import os
|
| 17 |
-
|
| 18 |
-
from spaces import GPU
|
| 19 |
|
| 20 |
import shutil
|
| 21 |
from pathlib import Path
|
|
@@ -52,11 +51,11 @@ model = None
|
|
| 52 |
tokenizer = None
|
| 53 |
generation_config = None
|
| 54 |
|
| 55 |
-
|
| 56 |
def test_llm_generation():
|
| 57 |
try:
|
| 58 |
test_prompt = "Hello, how are you today?"
|
| 59 |
-
inputs = tokenizer(test_prompt, return_tensors="pt")
|
| 60 |
with torch.no_grad():
|
| 61 |
outputs = model.generate(
|
| 62 |
**inputs,
|
|
@@ -70,7 +69,7 @@ def test_llm_generation():
|
|
| 70 |
except Exception as e:
|
| 71 |
add_log(f"❌ LLM quick test failed: {e}")
|
| 72 |
|
| 73 |
-
|
| 74 |
def initialize_model():
|
| 75 |
global model, tokenizer, generation_config
|
| 76 |
|
|
@@ -90,20 +89,20 @@ def initialize_model():
|
|
| 90 |
add_log("✅ Set pad_token to eos_token")
|
| 91 |
|
| 92 |
# Force GPU settings
|
| 93 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
| 94 |
-
# MODEL_ID,
|
| 95 |
-
# torch_dtype=torch.float16,
|
| 96 |
-
# cache_dir="/data/models",
|
| 97 |
-
# trust_remote_code=True,
|
| 98 |
-
# token=glotoken,
|
| 99 |
-
# device_map={"": 0}, # <- force GPU:0
|
| 100 |
-
# low_cpu_mem_usage=True
|
| 101 |
-
# )
|
| 102 |
model = AutoModelForCausalLM.from_pretrained(
|
| 103 |
-
MODEL_ID,
|
|
|
|
| 104 |
cache_dir="/data/models",
|
| 105 |
-
trust_remote_code=True
|
|
|
|
|
|
|
|
|
|
| 106 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
model.eval()
|
| 108 |
|
| 109 |
generation_config = GenerationConfig(
|
|
@@ -198,8 +197,8 @@ Now format the following:
|
|
| 198 |
truncation=True,
|
| 199 |
max_length=2048
|
| 200 |
)
|
| 201 |
-
|
| 202 |
-
inputs = {k: v for k, v in inputs.items()}
|
| 203 |
with torch.no_grad():
|
| 204 |
outputs = self.model.generate(
|
| 205 |
**inputs,
|
|
|
|
| 14 |
import PyPDF2
|
| 15 |
import traceback
|
| 16 |
import os
|
| 17 |
+
|
|
|
|
| 18 |
|
| 19 |
import shutil
|
| 20 |
from pathlib import Path
|
|
|
|
| 51 |
tokenizer = None
|
| 52 |
generation_config = None
|
| 53 |
|
| 54 |
+
|
| 55 |
def test_llm_generation():
|
| 56 |
try:
|
| 57 |
test_prompt = "Hello, how are you today?"
|
| 58 |
+
inputs = tokenizer(test_prompt, return_tensors="pt").to(model.device)
|
| 59 |
with torch.no_grad():
|
| 60 |
outputs = model.generate(
|
| 61 |
**inputs,
|
|
|
|
| 69 |
except Exception as e:
|
| 70 |
add_log(f"❌ LLM quick test failed: {e}")
|
| 71 |
|
| 72 |
+
|
| 73 |
def initialize_model():
|
| 74 |
global model, tokenizer, generation_config
|
| 75 |
|
|
|
|
| 89 |
add_log("✅ Set pad_token to eos_token")
|
| 90 |
|
| 91 |
# Force GPU settings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
model = AutoModelForCausalLM.from_pretrained(
|
| 93 |
+
MODEL_ID,
|
| 94 |
+
torch_dtype=torch.float16,
|
| 95 |
cache_dir="/data/models",
|
| 96 |
+
trust_remote_code=True,
|
| 97 |
+
token=glotoken,
|
| 98 |
+
device_map={"": 0}, # <- force GPU:0
|
| 99 |
+
low_cpu_mem_usage=True
|
| 100 |
)
|
| 101 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
| 102 |
+
# MODEL_ID,
|
| 103 |
+
# cache_dir="/data/models",
|
| 104 |
+
# trust_remote_code=True
|
| 105 |
+
# )
|
| 106 |
model.eval()
|
| 107 |
|
| 108 |
generation_config = GenerationConfig(
|
|
|
|
| 197 |
truncation=True,
|
| 198 |
max_length=2048
|
| 199 |
)
|
| 200 |
+
inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
|
| 201 |
+
#inputs = {k: v for k, v in inputs.items()}
|
| 202 |
with torch.no_grad():
|
| 203 |
outputs = self.model.generate(
|
| 204 |
**inputs,
|