Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import space
|
7 |
+
# Load model and processor from the Hugging Face Hub
|
8 |
+
MODEL_REPO = "Rausda6/autotrain-yh172-uui7d" # Replace with your actual model repo name
|
9 |
+
model = AutoModelForImageClassification.from_pretrained(MODEL_REPO)
|
10 |
+
processor = AutoImageProcessor.from_pretrained(MODEL_REPO)
|
11 |
+
|
12 |
+
labels = model.config.id2label
|
13 |
+
@spaces.GPU
|
14 |
+
def classify_image(img: Image.Image):
|
15 |
+
inputs = processor(images=img, return_tensors="pt")
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = model(**inputs)
|
18 |
+
logits = outputs.logits
|
19 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)[0]
|
20 |
+
|
21 |
+
# Build result dictionary with confidence values
|
22 |
+
probs_dict = {labels[i]: float(probs[i]) for i in range(len(probs))}
|
23 |
+
# Sort and format nicely
|
24 |
+
sorted_probs = sorted(probs_dict.items(), key=lambda x: x[1], reverse=True)
|
25 |
+
top_label, top_score = sorted_probs[0]
|
26 |
+
|
27 |
+
return {"Prediction": top_label, "Confidence": f"{top_score:.2%}"}, dict(sorted_probs)
|
28 |
+
|
29 |
+
# Gradio interface
|
30 |
+
demo = gr.Interface(
|
31 |
+
fn=classify_image,
|
32 |
+
inputs=gr.Image(type="pil"),
|
33 |
+
outputs=[gr.Label(label="Top Prediction"), gr.Label(num_top_classes=6, label="Class Probabilities")],
|
34 |
+
title="Image Classification with AutoTrain Model",
|
35 |
+
description="Upload a JPG image to classify it using the fine-tuned model."
|
36 |
+
)
|
37 |
+
|
38 |
+
demo.launch()
|