Rathapoom's picture
Update app.py
4b10535 verified
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from PyPDF2 import PdfReader
import gradio as gr
from datasets import Dataset, load_from_disk
from sentence_transformers import SentenceTransformer
import numpy as np
# Extract text from PDF
def extract_text_from_pdf(pdf_path):
text = ""
with open(pdf_path, "rb") as f:
reader = PdfReader(f)
for page in reader.pages:
text += page.extract_text()
return text
# Load model and tokenizer
model_name = "scb10x/llama-3-typhoon-v1.5x-8b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Load a sentence transformer model for embedding generation
embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Extract text from the provided PDF
pdf_path = "/home/user/app/TOPF 2564.pdf" # Ensure this path is correct
pdf_text = extract_text_from_pdf(pdf_path)
passages = [{"title": "", "text": line} for line in pdf_text.split('\n') if line.strip()]
# Convert text to embeddings
embeddings = embedding_model.encode([passage["text"] for passage in passages])
# Create a Dataset with embeddings
dataset = Dataset.from_dict({"title": [p["title"] for p in passages], "text": [p["text"] for p in passages], "embeddings": embeddings.tolist()})
# Save the dataset and create an index in the current working directory
dataset_path = "/home/user/app/rag_document_dataset"
index_path = "/home/user/app/rag_document_index"
# Ensure the directory exists
os.makedirs(dataset_path, exist_ok=True)
os.makedirs(index_path, exist_ok=True)
# Save the dataset to disk and create an index
dataset.save_to_disk(dataset_path)
dataset = load_from_disk(dataset_path)
# Add FAISS index while addressing numpy object deprecation
def add_faiss_index(dataset, column):
import faiss # Make sure faiss is installed
embeddings = np.array(dataset[column])
dim = embeddings.shape[1]
index = faiss.IndexFlatL2(dim)
index.add(embeddings)
dataset.add_faiss_index(column=column)
return dataset
dataset = add_faiss_index(dataset, column="embeddings")
dataset.save(index_path)
# Custom retriever
def retrieve(query):
# Use FAISS index to retrieve relevant passages
query_embedding = embedding_model.encode([query])
scores, samples = dataset.get_nearest_examples("embeddings", query_embedding, k=5)
retrieved_passages = " ".join([sample["text"] for sample in samples])
return retrieved_passages
# Define the chat function
def answer_question(question, context):
retrieved_context = retrieve(question)
inputs = tokenizer(question + " " + retrieved_context, return_tensors="pt")
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
# Generate the answer
outputs = model.generate(input_ids=input_ids, attention_mask=attention_mask)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
# Gradio interface setup
def ask(question):
return answer_question(question, pdf_text)
demo = gr.Interface(
fn=ask,
inputs=gr.inputs.Textbox(lines=2, placeholder="Ask something..."),
outputs="text",
title="Document QA with RAG",
description="Ask questions based on the provided document."
)
if __name__ == "__main__":
demo.launch()