Rashi123 commited on
Commit
ab2d6b7
·
verified ·
1 Parent(s): c40ab25

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -0
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import streamlit as st
3
+ from PIL import Image
4
+ import re
5
+ import io
6
+ import torch
7
+ from transformers import AutoModel, AutoTokenizer
8
+ import tempfile
9
+
10
+ # Function to load model and tokenizer
11
+ @st.cache_resource
12
+ def load_model():
13
+ tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
14
+ model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
15
+ model = model.eval()
16
+ return tokenizer, model
17
+
18
+ def search_keyword(extracted_text, keyword):
19
+ if not keyword:
20
+ return extracted_text
21
+ pattern = re.compile(re.escape(keyword), re.IGNORECASE)
22
+ highlighted_text = pattern.sub(lambda m: f'<span style="color: red; font-weight: bold;">{m.group()}</span>', extracted_text)
23
+ return highlighted_text
24
+
25
+
26
+ def main():
27
+ st.title("Simplified OCR Application")
28
+
29
+ # File uploader
30
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
31
+
32
+ # Placeholder for extracted text (simulating OCR result)
33
+ extracted_text = None
34
+ # Load model and tokenizer
35
+ tokenizer, model = load_model()
36
+
37
+ if uploaded_file is not None:
38
+ # Display the uploaded image
39
+ image = Image.open(uploaded_file)
40
+ st.image(image, caption='Uploaded Image', use_column_width=True)
41
+
42
+ # Simulate OCR extraction (replace this with actual OCR in your full app)
43
+ if st.button('Extract Text'):
44
+ # Save the uploaded file to a temporary file
45
+ with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
46
+ temp_filename = temp_file.name
47
+ image.save(temp_filename, format='PNG')
48
+
49
+ # Perform OCR
50
+ with st.spinner('Extracting text...'):
51
+ res = model.chat(tokenizer, temp_filename, ocr_type='ocr')
52
+
53
+ # Display result
54
+
55
+ extracted_text = res
56
+ st.session_state['extracted_text'] = extracted_text
57
+ st.subheader("Extracted Text:")
58
+ st.write(extracted_text)
59
+
60
+
61
+ # Search functionality
62
+ if 'extracted_text' in st.session_state:
63
+ keyword = st.text_input("Enter a keyword to search:")
64
+ if st.button("Search"):
65
+ if keyword:
66
+ highlighted_text = search_keyword(st.session_state['extracted_text'], keyword)
67
+ st.subheader("Search Results:")
68
+ st.write(highlighted_text, unsafe_allow_html=True)
69
+ st.download_button(
70
+ label="Download highlighted text",
71
+ data=highlighted_text.encode('utf-8'),
72
+ file_name="highlighted_text.txt",
73
+ mime="text/plain"
74
+ )
75
+ else:
76
+ st.warning("Please enter a keyword to search.")
77
+
78
+ if __name__ == "__main__":
79
+ main()