Spaces:
Running
Running
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import copy | |
import math | |
import time | |
from typing import List | |
import cv2 | |
import numpy as np | |
try: | |
from .utils import ClsPostProcess, read_yaml, OrtInferSession | |
except: | |
from utils import ClsPostProcess, read_yaml, OrtInferSession | |
class TextClassifier(object): | |
def __init__(self, config): | |
self.cls_image_shape = config['cls_image_shape'] | |
self.cls_batch_num = config['cls_batch_num'] | |
self.cls_thresh = config['cls_thresh'] | |
self.postprocess_op = ClsPostProcess(config['label_list']) | |
session_instance = OrtInferSession(config) | |
self.session = session_instance.session | |
self.input_name = session_instance.get_input_name() | |
def __call__(self, img_list: List[np.ndarray]): | |
if isinstance(img_list, np.ndarray): | |
img_list = [img_list] | |
img_list = copy.deepcopy(img_list) | |
# Calculate the aspect ratio of all text bars | |
width_list = [img.shape[1] / float(img.shape[0]) for img in img_list] | |
# Sorting can speed up the cls process | |
indices = np.argsort(np.array(width_list)) | |
img_num = len(img_list) | |
cls_res = [['', 0.0]] * img_num | |
batch_num = self.cls_batch_num | |
elapse = 0 | |
for beg_img_no in range(0, img_num, batch_num): | |
end_img_no = min(img_num, beg_img_no + batch_num) | |
norm_img_batch = [] | |
for ino in range(beg_img_no, end_img_no): | |
norm_img = self.resize_norm_img(img_list[indices[ino]]) | |
norm_img = norm_img[np.newaxis, :] | |
norm_img_batch.append(norm_img) | |
norm_img_batch = np.concatenate(norm_img_batch).astype(np.float32) | |
starttime = time.time() | |
onnx_inputs = {self.input_name: norm_img_batch} | |
prob_out = self.session.run(None, onnx_inputs)[0] | |
cls_result = self.postprocess_op(prob_out) | |
elapse += time.time() - starttime | |
for rno in range(len(cls_result)): | |
label, score = cls_result[rno] | |
cls_res[indices[beg_img_no + rno]] = [label, score] | |
if '180' in label and score > self.cls_thresh: | |
img_list[indices[beg_img_no + rno]] = cv2.rotate( | |
img_list[indices[beg_img_no + rno]], 1) | |
return img_list, cls_res, elapse | |
def resize_norm_img(self, img): | |
img_c, img_h, img_w = self.cls_image_shape | |
h, w = img.shape[:2] | |
ratio = w / float(h) | |
if math.ceil(img_h * ratio) > img_w: | |
resized_w = img_w | |
else: | |
resized_w = int(math.ceil(img_h * ratio)) | |
resized_image = cv2.resize(img, (resized_w, img_h)) | |
resized_image = resized_image.astype('float32') | |
if img_c == 1: | |
resized_image = resized_image / 255 | |
resized_image = resized_image[np.newaxis, :] | |
else: | |
resized_image = resized_image.transpose((2, 0, 1)) / 255 | |
resized_image -= 0.5 | |
resized_image /= 0.5 | |
padding_im = np.zeros((img_c, img_h, img_w), dtype=np.float32) | |
padding_im[:, :, :resized_w] = resized_image | |
return padding_im | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--image_path', type=str, help='image_dir|image_path') | |
parser.add_argument('--config_path', type=str, default='config.yaml') | |
args = parser.parse_args() | |
config = read_yaml(args.config_path) | |
text_classifier = TextClassifier(config) | |
img = cv2.imread(args.image_path) | |
img_list, cls_res, predict_time = text_classifier(img) | |
for ino in range(len(img_list)): | |
print(f"cls result:{cls_res[ino]}") | |