Spaces:
Running
Running
File size: 13,045 Bytes
9d7970d 26e0ac6 9d7970d 26c325e 5f04844 b5b8cda f1f0527 b5b8cda aaf4937 5f04844 024b191 5f04844 9d7970d eaf2663 65393ab 26c325e 9d7970d 26c325e 9d7970d 26c325e 9d7970d 26c325e 9d7970d 4318ef2 9d7970d eaf2663 79797b0 26c325e 5f04844 9d7970d 43049df 26e0ac6 43049df 024b191 43049df 024b191 79797b0 024b191 9d7970d f101223 024b191 26c325e 9d7970d 26c325e eaf2663 5f04844 e7a5154 26c325e e7a5154 26c325e 26e0ac6 43049df 024b191 43049df 26c325e 43049df 26c325e 9d7970d eaf2663 5f04844 aaf4937 5f04844 26e0ac6 5f04844 aaf4937 26e0ac6 5f04844 aaf4937 13a3a28 eaf2663 26e0ac6 aaf4937 6a02cc9 aaf4937 6a02cc9 aaf4937 024b191 aaf4937 6a02cc9 aaf4937 6a02cc9 aaf4937 26e0ac6 eaf2663 6a02cc9 5f04844 11cdf80 5f04844 13a3a28 aaf4937 eaf2663 5f04844 f1f0527 5f04844 f1f0527 e7a5154 5f04844 f1f0527 5f04844 eaf2663 f1f0527 eaf2663 f1f0527 5f04844 e5c3583 5f04844 eaf2663 5f04844 e7a5154 eaf2663 79797b0 5f04844 26e0ac6 5f04844 26c325e 9d7970d 26c325e 5f04844 9d7970d 26e0ac6 26c325e 9d7970d 5f04844 9d7970d 43049df 5f04844 43049df 5f04844 024b191 79797b0 024b191 43049df 9d7970d 26c325e 9d7970d 26c325e 5f04844 9d7970d eaf2663 5f04844 26e0ac6 5f04844 26e0ac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import plotly.express as px
import plotly.graph_objects as go
import plotly.colors as pc
from scipy.stats import gaussian_kde
import numpy as np
import polars as pl
import gradio as gr
from math import ceil
from translate import max_pitch_types, jp_pitch_to_en_pitch
from data import (
df,
# pitch_stats, rhb_pitch_stats,lhb_pitch_stats,
# league_pitch_stats, rhb_league_pitch_stats, lhb_league_pitch_stats
compute_pitch_stats, compute_league_pitch_stats
)
MAX_LOCS = len(jp_pitch_to_en_pitch)
LOCS_PER_ROW = 4
MAX_ROWS = ceil(MAX_LOCS/LOCS_PER_ROW)
INSUFFICIENT_PITCHES_MSG = 'No visualization: Not enough pitches thrown'
INSUFFICIENT_PITCHES_MSG_MULTI_LINE = 'No visualization:<br>Not enough pitches thrown'
# GRADIO FUNCTIONS
# def clone_if_dataframe(item):
# if isinstance(item, pl.DataFrame):
# # print(type(item))
# return item.clone()
# else:
# return item
#
# def clone_df(fn):
# def _fn(*args, **kwargs):
# args = [clone_if_dataframe(arg) for arg in args]
# kwargs = {k: clone_if_dataframe(arg) for k, arg in kwargs.items()}
# return fn(*args, **kwargs)
# return _fn
#
def copy_dataframe(df, num_copy_to):
return [df.clone() for _ in range(num_copy_to)]
# location maps
def fit_pred_kde(data, X, Y):
kde = gaussian_kde(data)
return kde(np.stack((X, Y)).reshape(2, -1)).reshape(*X.shape)
plot_s = 256
sz_h = 200
sz_w = 160
h_h = 200 - 40*2
h_w = 160 - 32*2
kde_range = np.arange(-plot_s/2, plot_s/2, 1)
X, Y = np.meshgrid(
kde_range,
kde_range
)
def coordinatify(h, w):
return dict(
x0=-w/2,
y0=-h/2,
x1=w/2,
y1=h/2
)
colorscale = pc.sequential.OrRd
colorscale = [
[0, 'rgba(0, 0, 0, 0)'],
] + [
[i / len(colorscale), color] for i, color in enumerate(colorscale, start=1)
]
# @clone_df
def plot_loc(df, handedness, league_df=None, min_pitches=3, max_pitches=5000):
loc = df.select(['plate_x', 'plate_z'])
fig = go.Figure()
if len(loc) >= min_pitches:
Z = fit_pred_kde(loc.to_numpy().T, X, Y)
fig.add_shape(
type="rect",
**coordinatify(sz_h, sz_w),
line_color='gray',
# fillcolor='rgba(220, 220, 220, 0.75)', #gainsboro
)
fig.add_shape(
type="rect",
**coordinatify(h_h, h_w),
line_color='dimgray',
)
fig.add_trace(go.Contour(
z=Z,
x=kde_range,
y=kde_range,
colorscale=colorscale,
zmin=1e-5,
zmax=Z.max(),
contours={
'start': 1e-5,
'end': Z.max(),
'size': Z.max() / 5
},
showscale=False
))
else:
fig.add_annotation(
x=0,
y=0,
text=INSUFFICIENT_PITCHES_MSG_MULTI_LINE,
showarrow=False
)
if league_df is not None:
league_loc = league_df.select(pl.col('plate_x', 'plate_z'))
if len(league_loc) > max_pitches:
league_loc = league_loc.sample(max_pitches, seed=0)
if len(league_loc) >= min_pitches:
league_Z = fit_pred_kde(league_loc.to_numpy().T, X, Y)
percentile = np.quantile(league_Z, 0.9)
fig.add_trace(go.Contour(
z=league_Z,
x=kde_range,
y=kde_range,
colorscale=[
[0, 'rgba(0, 0, 0, 0)'],
[1, 'rgba(0, 0, 0, 0)']
],
zmin=percentile,
zmax=league_Z.max(),
contours={
'start': percentile,
'end': league_Z.max(),
'size': league_Z.max() - percentile,
# 'coloring': 'heatmap'
},
line={
'width': 2,
'color': 'black',
'dash': 'dash'
},
showlegend=True,
showscale=False,
visible=True if handedness != 'Both' else 'legendonly',
name='NPB'
))
fig.update_layout(
xaxis=dict(range=[-plot_s/2, plot_s/2+1], showticklabels=False),
yaxis=dict(range=[-plot_s/2, plot_s/2+1], scaleanchor='x', scaleratio=1, showticklabels=False),
legend=dict(orientation='h', y=0, yanchor='top'),
# width=384,
# height=384
)
return fig
# velo distribution
# @clone_df
def plot_velo(df=None, player=None, velos=None, pitch_type=None, pitch_name=None, min_pitches=2):
assert not ((velos is None and player is None) or (velos is not None and player is not None)), 'exactly one of `player` or `velos` must be specified'
if velos is None and player is not None:
assert not ((pitch_type is None and pitch_name is None) or (pitch_type is not None and pitch_name is not None)), 'exactly one of `pitch_type` or `pitch_name` must be specified'
assert df is not None, '`df` must be provided if `velos` not provided'
pitch_val = pitch_type or pitch_name
pitch_col = 'pitch_type' if pitch_type else 'pitch_name'
# velos = df.set_index(['name', pitch_col]).sort_index().loc[(player, pitch_val), 'release_speed']
velos = df.filter((pl.col('name') == player) & (pl.col(pitch_col) == pitch_val))['release_speed']
fig = go.Figure()
if len(velos) >= min_pitches:
fig = fig.add_trace(go.Violin(x=velos, side='positive', hoveron='points', points=False, meanline_visible=True, name='Velocity Distribution'))
median = velos.median()
x_range = [median-25, median+25]
else:
fig.add_annotation(
x=(170+125)/2,
y=0.3/2,
text=INSUFFICIENT_PITCHES_MSG_MULTI_LINE,
showarrow=False,
)
x_range = [125, 170]
fig.update_layout(
xaxis=dict(
title='Velocity',
range=x_range,
scaleratio=2
),
yaxis=dict(
title='Frequency',
range=[0, 0.3],
scaleanchor='x',
scaleratio=1,
tickvals=np.linspace(0, 0.3, 3),
ticktext=np.linspace(0, 0.3, 3),
),
autosize=True,
# width=512,
# height=256,
modebar_remove=['zoom', 'autoScale', 'resetScale'],
)
return fig
# @clone_df
def plot_velo_summary(df, league_df, player):
min_pitches = 2
# player_df = df.set_index('name').sort_index().loc[player].sort_values('pitch_name').set_index('pitch_name')
# pitch_counts = player_df.index.value_counts(ascending=True)
player_df = df.filter(pl.col('release_speed').is_not_null())
pitch_counts = player_df['pitch_name'].value_counts().sort('count')
# league_df = df.set_index('pitch_name').sort_index()
league_df = league_df.filter(pl.col('release_speed').is_not_null())
fig = go.Figure()
min_velo = player_df['release_speed'].min() if len(player_df) else 130
max_velo = player_df['release_speed'].max() if len(player_df) else 160
velo_center = (min_velo + max_velo) / 2
# for i, (pitch_name, count) in enumerate(pitch_counts.items()):
for i, (pitch_name, count) in enumerate(pitch_counts.iter_rows()):
# velos = player_df.loc[pitch_name, 'release_speed']
# league_velos = league_df.loc[pitch_name, 'release_speed']
velos = player_df.filter(pl.col('pitch_name') == pitch_name)['release_speed']
league_velos = league_df.filter(pl.col('pitch_name') == pitch_name)['release_speed']
fig.add_trace(go.Violin(
x=league_velos,
y=[pitch_name]*len(league_velos),
line_color='gray',
side='positive',
orientation='h',
meanline_visible=True,
points=False,
legendgroup='NPB',
legendrank=1,
# visible='legendonly',
# showlegend=False,
showlegend=i==0,
name='NPB',
))
if count >= min_pitches:
fig.add_trace(go.Violin(
x=velos,
y=[pitch_name]*len(velos),
side='positive',
orientation='h',
meanline_visible=True,
points=False,
legendgroup=pitch_name,
legendrank=len(pitch_counts) - i, #2+(len(pitch_counts) - i),
name=pitch_name
))
else:
fig.add_trace(go.Scatter(
x=[velo_center],
y=[pitch_name],
text=[INSUFFICIENT_PITCHES_MSG],
textposition='top center',
hovertext=False,
mode="lines+text",
legendgroup=pitch_name,
legendrank=len(pitch_counts) - i, #2+(len(pitch_counts) - i),
name=pitch_name,
))
# fig.add_trace(go.Violin(
# x=league_df['release_speed'],
# y=[player]*len(league_df),
# line_color='gray',
# side='positive',
# orientation='h',
# meanline_visible=True,
# points=False,
# legendgroup='NPB',
# legendrank=1,
# # visible='legendonly',
# name='NPB',
# ))
# fig.add_trace(go.Violin(
# x=player_df['release_speed'],
# y=[player]*len(player_df),
# side='positive',
# orientation='h',
# meanline_visible=True,
# points=False,
# legendrank=0,
# name=player
# ))
# fig.update_xaxes(title='Velocity', range=[player_df['release_speed'].dropna().min() - 2, player_df['release_speed'].dropna().max() + 2])
fig.update_xaxes(title='Velocity', range=[min_velo - 2, max_velo + 2])
# fig.update_yaxes(range=[0, len(pitch_counts)+1-0.25], visible=False)
fig.update_yaxes(range=[0, len(pitch_counts)-0.25], visible=False)
fig.update_layout(
violingap=0,
violingroupgap=0,
legend=dict(orientation='h', y=-0.15, yanchor='top'),
modebar_remove=['zoom', 'select2d', 'lasso2d', 'pan', 'autoScale'],
dragmode=False
)
return fig
def update_dfs(player, handedness, start_date, end_date, df):
date_filter = (pl.col('game_date') >= start_date) & (pl.col('game_date') <= end_date)
if handedness == 'Both':
handedness_filter = pl.col('stand').is_in(['R', 'L'])
# _pitch_stats = pitch_stats
# _league_pitch_stats = league_pitch_stats
elif handedness == 'Right':
handedness_filter = pl.col('stand') == 'R'
# _pitch_stats = rhb_pitch_stats
# _league_pitch_stats = rhb_league_pitch_stats
elif handedness == 'Left':
handedness_filter = pl.col('stand') == 'L'
# _pitch_stats = lhb_pitch_stats
# _league_pitch_stats = lhb_league_pitch_stats
player_filter = pl.col('name') == player
non_player_filter = handedness_filter & date_filter
final_filter = player_filter & non_player_filter
_df = df.filter(final_filter)
_league_df = df.filter(non_player_filter)
return (
_df,
_league_df,
compute_pitch_stats(_df),
compute_league_pitch_stats(_league_df),
)
def create_set_download_file_fn(filepath):
def set_download_file(df):
df.write_csv(filepath)
return filepath
return set_download_file
def preview_df(df):
return df.head()
# @clone_df
def plot_usage(df, player):
fig = px.pie(df.select('pitch_name'), names='pitch_name')
fig.update_traces(texttemplate='%{percent:.1%}', hovertemplate=f'<b>{player}</b><br>' + 'threw a <b>%{label}</b><br><b>%{percent:.1%}</b> of the time (<b>%{value}</b> pitches)')
return fig
# @clone_df
def plot_pitch_cards(df, league_df, pitch_stats, handedness):
pitch_counts = df['pitch_name'].value_counts().sort('count', descending=True)
pitch_rows = []
pitch_groups = []
pitch_names = []
pitch_infos = []
pitch_velos = []
pitch_locs = []
for row in range(ceil(len(pitch_counts) / LOCS_PER_ROW)):
pitch_rows.append(gr.update(visible=True))
for row in range(len(pitch_rows), MAX_ROWS):
pitch_rows.append(gr.update(visible=False))
for pitch_name, count in pitch_counts.iter_rows():
pitch_groups.append(gr.update(visible=True))
pitch_names.append(gr.update(value=f'### {pitch_name}', visible=True))
pitch_infos.append(gr.update(
value=pitch_stats.filter(pl.col('pitch_name') == pitch_name).select(['Whiff%', 'CSW%']),
visible=True
))
pitch_velos.append(gr.update(
value=plot_velo(velos=df.filter((pl.col('pitch_name') == pitch_name) & (pl.col('release_speed').is_not_null()))['release_speed']),
visible=True
))
pitch_locs.append(gr.update(
value=plot_loc(
df=df.filter(pl.col('pitch_name') == pitch_name),
handedness=handedness,
league_df=league_df.filter(pl.col('pitch_name') == pitch_name)
),
label='Pitch location',
visible=True
))
for _ in range(max_pitch_types - len(pitch_names)):
pitch_groups.append(gr.update(visible=False))
pitch_names.append(gr.update(value=None, visible=False))
pitch_infos.append(gr.update(value=None, visible=False))
pitch_velos.append(gr.update(value=None, visible=False))
pitch_locs.append(gr.update(value=None, visible=False))
return pitch_rows + pitch_groups + pitch_names + pitch_infos + pitch_velos + pitch_locs
# @clone_df
def update_velo_stats(pitch_stats, league_pitch_stats):
return (
pitch_stats
.select(pl.col('pitch_name').alias('Pitch'), pl.col('Velocity').alias('Avg. Velo'), pl.col('Count'))
.join(
league_pitch_stats.select(pl.col('pitch_name').alias('Pitch'), pl.col('Velocity').alias('League Avg. Velo')),
on='Pitch',
how='inner'
)
.sort('Count', descending=True)
.drop('Count')
)
|