File size: 13,045 Bytes
9d7970d
 
 
 
 
 
26e0ac6
9d7970d
26c325e
5f04844
 
 
b5b8cda
 
f1f0527
 
 
b5b8cda
aaf4937
5f04844
 
 
 
024b191
 
5f04844
9d7970d
 
eaf2663
 
 
 
 
 
 
 
 
 
 
 
 
 
65393ab
 
 
26c325e
9d7970d
 
 
 
26c325e
9d7970d
 
 
 
 
 
 
 
 
 
 
 
26c325e
9d7970d
 
 
 
 
 
 
 
26c325e
9d7970d
 
 
 
4318ef2
9d7970d
 
 
eaf2663
79797b0
26c325e
5f04844
9d7970d
 
43049df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26e0ac6
43049df
 
 
 
 
 
 
024b191
43049df
 
024b191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79797b0
024b191
 
 
9d7970d
f101223
 
024b191
26c325e
 
9d7970d
 
 
26c325e
 
eaf2663
5f04844
e7a5154
26c325e
 
 
e7a5154
26c325e
 
26e0ac6
 
 
43049df
 
 
 
 
 
 
 
 
024b191
43049df
 
 
26c325e
 
 
43049df
26c325e
 
 
 
 
 
 
 
 
 
 
 
 
 
9d7970d
 
 
eaf2663
5f04844
aaf4937
5f04844
26e0ac6
5f04844
 
 
 
aaf4937
26e0ac6
5f04844
aaf4937
 
13a3a28
eaf2663
 
 
26e0ac6
 
 
 
 
 
aaf4937
 
 
 
 
 
 
 
 
 
 
6a02cc9
 
aaf4937
 
 
 
 
 
 
 
 
 
 
6a02cc9
aaf4937
 
 
 
 
 
024b191
aaf4937
 
 
 
6a02cc9
aaf4937
 
 
6a02cc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf4937
26e0ac6
eaf2663
6a02cc9
 
5f04844
 
 
 
11cdf80
 
5f04844
13a3a28
aaf4937
 
 
eaf2663
 
5f04844
 
f1f0527
 
5f04844
 
f1f0527
 
e7a5154
5f04844
f1f0527
 
5f04844
eaf2663
 
f1f0527
eaf2663
f1f0527
 
 
 
 
 
 
5f04844
e5c3583
 
 
 
 
5f04844
 
 
 
eaf2663
5f04844
 
 
 
e7a5154
eaf2663
79797b0
5f04844
26e0ac6
5f04844
26c325e
9d7970d
 
26c325e
5f04844
 
 
 
 
 
 
9d7970d
26e0ac6
26c325e
9d7970d
 
5f04844
9d7970d
 
43049df
5f04844
43049df
 
5f04844
024b191
 
79797b0
024b191
 
43049df
 
 
9d7970d
 
26c325e
9d7970d
 
26c325e
5f04844
 
 
9d7970d
eaf2663
5f04844
 
 
26e0ac6
 
5f04844
26e0ac6
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

import plotly.express as px
import plotly.graph_objects as go
import plotly.colors as pc
from scipy.stats import gaussian_kde
import numpy as np
import polars as pl
import gradio as gr

from math import ceil

from translate import max_pitch_types, jp_pitch_to_en_pitch
from data import (
    df,
    # pitch_stats, rhb_pitch_stats,lhb_pitch_stats,
    # league_pitch_stats, rhb_league_pitch_stats, lhb_league_pitch_stats
    compute_pitch_stats, compute_league_pitch_stats
)


MAX_LOCS = len(jp_pitch_to_en_pitch)
LOCS_PER_ROW = 4
MAX_ROWS = ceil(MAX_LOCS/LOCS_PER_ROW)
INSUFFICIENT_PITCHES_MSG = 'No visualization: Not enough pitches thrown'
INSUFFICIENT_PITCHES_MSG_MULTI_LINE = 'No visualization:<br>Not enough pitches thrown'

# GRADIO FUNCTIONS

# def clone_if_dataframe(item):
  # if isinstance(item, pl.DataFrame):
    # # print(type(item))
    # return item.clone()
  # else:
    # return item
# 
# def clone_df(fn):
  # def _fn(*args, **kwargs):
    # args = [clone_if_dataframe(arg) for arg in args]
    # kwargs = {k: clone_if_dataframe(arg) for k, arg in kwargs.items()}
    # return fn(*args, **kwargs)
  # return _fn
# 
def copy_dataframe(df, num_copy_to):
  return [df.clone() for _ in range(num_copy_to)]

# location maps
def fit_pred_kde(data, X, Y):
  kde = gaussian_kde(data)
  return kde(np.stack((X, Y)).reshape(2, -1)).reshape(*X.shape)


plot_s = 256
sz_h = 200
sz_w = 160
h_h = 200 - 40*2
h_w = 160 - 32*2

kde_range = np.arange(-plot_s/2, plot_s/2, 1)
X, Y = np.meshgrid(
    kde_range,
    kde_range
)


def coordinatify(h, w):
  return dict(
      x0=-w/2,
      y0=-h/2,
      x1=w/2,
      y1=h/2
  )


colorscale = pc.sequential.OrRd
colorscale = [
    [0, 'rgba(0, 0, 0, 0)'],
] + [
    [i / len(colorscale), color] for i, color in enumerate(colorscale, start=1)
]


# @clone_df
def plot_loc(df, handedness, league_df=None, min_pitches=3, max_pitches=5000):

  loc = df.select(['plate_x', 'plate_z'])

  fig = go.Figure()
  if len(loc) >= min_pitches:
    Z = fit_pred_kde(loc.to_numpy().T, X, Y)
    fig.add_shape(
        type="rect",
        **coordinatify(sz_h, sz_w),
        line_color='gray',
        # fillcolor='rgba(220, 220, 220, 0.75)', #gainsboro
    )
    fig.add_shape(
        type="rect",
        **coordinatify(h_h, h_w),
        line_color='dimgray',
    )
    fig.add_trace(go.Contour(
        z=Z,
        x=kde_range,
        y=kde_range,
        colorscale=colorscale,
        zmin=1e-5,
        zmax=Z.max(),
        contours={
            'start': 1e-5,
            'end': Z.max(),
            'size': Z.max() / 5
        },
        showscale=False
    ))
  else:
      fig.add_annotation(
          x=0,
          y=0,
          text=INSUFFICIENT_PITCHES_MSG_MULTI_LINE,
          showarrow=False
      )

  if league_df is not None:
    league_loc = league_df.select(pl.col('plate_x', 'plate_z'))
    if len(league_loc) > max_pitches:
      league_loc = league_loc.sample(max_pitches, seed=0)

    if len(league_loc) >= min_pitches:
      league_Z = fit_pred_kde(league_loc.to_numpy().T, X, Y)
      percentile = np.quantile(league_Z, 0.9)
      fig.add_trace(go.Contour(
          z=league_Z,
          x=kde_range,
          y=kde_range,
          colorscale=[
              [0, 'rgba(0, 0, 0, 0)'],
              [1, 'rgba(0, 0, 0, 0)']
          ],
          zmin=percentile,
          zmax=league_Z.max(),
          contours={
              'start': percentile,
              'end': league_Z.max(),
              'size': league_Z.max() - percentile,
              # 'coloring': 'heatmap'
          },
          line={
              'width': 2,
              'color': 'black',
              'dash': 'dash'
          },
          showlegend=True,
          showscale=False,
          visible=True if handedness != 'Both' else 'legendonly',
          name='NPB'
      ))

  fig.update_layout(
    xaxis=dict(range=[-plot_s/2, plot_s/2+1], showticklabels=False),
    yaxis=dict(range=[-plot_s/2, plot_s/2+1], scaleanchor='x', scaleratio=1, showticklabels=False),
    legend=dict(orientation='h', y=0, yanchor='top'),
    # width=384,
    # height=384
  )
  return fig


# velo distribution
# @clone_df
def plot_velo(df=None, player=None, velos=None, pitch_type=None, pitch_name=None, min_pitches=2):
  assert not ((velos is None and player is None) or (velos is not None and player is not None)), 'exactly one of `player` or `velos` must be specified'

  if velos is None and player is not None:
    assert not ((pitch_type is None and pitch_name is None) or (pitch_type is not None and pitch_name is not None)), 'exactly one of `pitch_type` or `pitch_name` must be specified'
    assert df is not None, '`df` must be provided if `velos` not provided'
    pitch_val = pitch_type or pitch_name
    pitch_col = 'pitch_type' if pitch_type else 'pitch_name'
    # velos = df.set_index(['name', pitch_col]).sort_index().loc[(player, pitch_val), 'release_speed']
    velos = df.filter((pl.col('name') == player) & (pl.col(pitch_col) == pitch_val))['release_speed']

  fig = go.Figure()
  if len(velos) >= min_pitches:
    fig = fig.add_trace(go.Violin(x=velos, side='positive', hoveron='points', points=False, meanline_visible=True, name='Velocity Distribution'))
    median = velos.median()
    x_range = [median-25, median+25]
  else:
    fig.add_annotation(
        x=(170+125)/2,
        y=0.3/2,
        text=INSUFFICIENT_PITCHES_MSG_MULTI_LINE,
        showarrow=False,
    )
    x_range = [125, 170]
  fig.update_layout(
    xaxis=dict(
        title='Velocity',
        range=x_range,
        scaleratio=2
    ),
    yaxis=dict(
        title='Frequency',
        range=[0, 0.3],
        scaleanchor='x',
        scaleratio=1,
        tickvals=np.linspace(0, 0.3, 3),
        ticktext=np.linspace(0, 0.3, 3),
    ),
    autosize=True,
    # width=512,
    # height=256,
    modebar_remove=['zoom', 'autoScale', 'resetScale'],
  )
  return fig

# @clone_df
def plot_velo_summary(df, league_df, player):

  min_pitches = 2

  # player_df = df.set_index('name').sort_index().loc[player].sort_values('pitch_name').set_index('pitch_name')
  # pitch_counts = player_df.index.value_counts(ascending=True)
  player_df = df.filter(pl.col('release_speed').is_not_null())
  pitch_counts = player_df['pitch_name'].value_counts().sort('count')

  # league_df = df.set_index('pitch_name').sort_index()
  league_df = league_df.filter(pl.col('release_speed').is_not_null())

  fig = go.Figure()

  min_velo = player_df['release_speed'].min() if len(player_df) else 130
  max_velo = player_df['release_speed'].max() if len(player_df) else 160
  velo_center = (min_velo + max_velo) / 2
  # for i, (pitch_name, count) in enumerate(pitch_counts.items()):
  for i, (pitch_name, count) in enumerate(pitch_counts.iter_rows()):
    # velos = player_df.loc[pitch_name, 'release_speed']
    # league_velos = league_df.loc[pitch_name, 'release_speed']
    velos = player_df.filter(pl.col('pitch_name') == pitch_name)['release_speed']
    league_velos = league_df.filter(pl.col('pitch_name') == pitch_name)['release_speed']
    fig.add_trace(go.Violin(
        x=league_velos,
        y=[pitch_name]*len(league_velos),
        line_color='gray',
        side='positive',
        orientation='h',
        meanline_visible=True,
        points=False,
        legendgroup='NPB',
        legendrank=1,
        # visible='legendonly',
        # showlegend=False,
        showlegend=i==0,
        name='NPB',
    ))
    if count >= min_pitches:
      fig.add_trace(go.Violin(
          x=velos,
          y=[pitch_name]*len(velos),
          side='positive',
          orientation='h',
          meanline_visible=True,
          points=False,
          legendgroup=pitch_name,
          legendrank=len(pitch_counts) - i, #2+(len(pitch_counts) - i),
          name=pitch_name
      ))
    else:
      fig.add_trace(go.Scatter(
          x=[velo_center],
          y=[pitch_name],
          text=[INSUFFICIENT_PITCHES_MSG],
          textposition='top center',
          hovertext=False,
          mode="lines+text",
          legendgroup=pitch_name,
          legendrank=len(pitch_counts) - i, #2+(len(pitch_counts) - i),
          name=pitch_name,
      ))

  # fig.add_trace(go.Violin(
  #     x=league_df['release_speed'],
  #     y=[player]*len(league_df),
  #     line_color='gray',
  #     side='positive',
  #     orientation='h',
  #     meanline_visible=True,
  #     points=False,
  #     legendgroup='NPB',
  #     legendrank=1,
  #     # visible='legendonly',
  #     name='NPB',
  # ))
  # fig.add_trace(go.Violin(
  #     x=player_df['release_speed'],
  #     y=[player]*len(player_df),
  #     side='positive',
  #     orientation='h',
  #     meanline_visible=True,
  #     points=False,
  #     legendrank=0,
  #     name=player
  # ))

  # fig.update_xaxes(title='Velocity', range=[player_df['release_speed'].dropna().min() - 2, player_df['release_speed'].dropna().max() + 2])
  fig.update_xaxes(title='Velocity', range=[min_velo - 2, max_velo + 2])
  # fig.update_yaxes(range=[0, len(pitch_counts)+1-0.25], visible=False)
  fig.update_yaxes(range=[0, len(pitch_counts)-0.25], visible=False)
  fig.update_layout(
      violingap=0,
      violingroupgap=0,
      legend=dict(orientation='h', y=-0.15, yanchor='top'),
      modebar_remove=['zoom', 'select2d', 'lasso2d', 'pan', 'autoScale'],
      dragmode=False
  )

  return fig


def update_dfs(player, handedness, start_date, end_date, df):
  date_filter = (pl.col('game_date') >= start_date) & (pl.col('game_date') <= end_date)
  if handedness == 'Both':
    handedness_filter = pl.col('stand').is_in(['R', 'L'])
    # _pitch_stats = pitch_stats
    # _league_pitch_stats = league_pitch_stats
  elif handedness == 'Right':
    handedness_filter = pl.col('stand') == 'R'
    # _pitch_stats = rhb_pitch_stats
    # _league_pitch_stats = rhb_league_pitch_stats
  elif handedness == 'Left':
    handedness_filter = pl.col('stand') == 'L'
    # _pitch_stats = lhb_pitch_stats
    # _league_pitch_stats = lhb_league_pitch_stats
  player_filter = pl.col('name') == player
  non_player_filter = handedness_filter & date_filter
  final_filter = player_filter & non_player_filter
  _df = df.filter(final_filter)
  _league_df = df.filter(non_player_filter)

  return (
    _df,
    _league_df, 
    compute_pitch_stats(_df), 
    compute_league_pitch_stats(_league_df),
  )

def create_set_download_file_fn(filepath):
  def set_download_file(df):
    df.write_csv(filepath)
    return filepath
  return set_download_file

def preview_df(df):
  return df.head()

# @clone_df
def plot_usage(df, player):
  fig = px.pie(df.select('pitch_name'), names='pitch_name')
  fig.update_traces(texttemplate='%{percent:.1%}', hovertemplate=f'<b>{player}</b><br>' + 'threw a <b>%{label}</b><br><b>%{percent:.1%}</b> of the time (<b>%{value}</b> pitches)')
  return fig

# @clone_df
def plot_pitch_cards(df, league_df, pitch_stats, handedness):
  pitch_counts = df['pitch_name'].value_counts().sort('count', descending=True)

  pitch_rows = []
  pitch_groups = []
  pitch_names = []
  pitch_infos = []
  pitch_velos = []
  pitch_locs = []

  for row in range(ceil(len(pitch_counts) / LOCS_PER_ROW)):
    pitch_rows.append(gr.update(visible=True))

  for row in range(len(pitch_rows), MAX_ROWS):
    pitch_rows.append(gr.update(visible=False))

  for pitch_name, count in pitch_counts.iter_rows():
    pitch_groups.append(gr.update(visible=True))
    pitch_names.append(gr.update(value=f'### {pitch_name}', visible=True))
    pitch_infos.append(gr.update(
        value=pitch_stats.filter(pl.col('pitch_name') == pitch_name).select(['Whiff%', 'CSW%']),
        visible=True
    ))
    pitch_velos.append(gr.update(
        value=plot_velo(velos=df.filter((pl.col('pitch_name') == pitch_name) & (pl.col('release_speed').is_not_null()))['release_speed']),
        visible=True
    ))
    pitch_locs.append(gr.update(
        value=plot_loc(
            df=df.filter(pl.col('pitch_name') == pitch_name),
            handedness=handedness,
            league_df=league_df.filter(pl.col('pitch_name') == pitch_name)
        ),
        label='Pitch location',
        visible=True
    ))

  for _ in range(max_pitch_types - len(pitch_names)):
    pitch_groups.append(gr.update(visible=False))
    pitch_names.append(gr.update(value=None, visible=False))
    pitch_infos.append(gr.update(value=None, visible=False))
    pitch_velos.append(gr.update(value=None, visible=False))
    pitch_locs.append(gr.update(value=None, visible=False))

  return pitch_rows + pitch_groups + pitch_names + pitch_infos + pitch_velos + pitch_locs

# @clone_df
def update_velo_stats(pitch_stats, league_pitch_stats):
  return (
      pitch_stats
      .select(pl.col('pitch_name').alias('Pitch'), pl.col('Velocity').alias('Avg. Velo'), pl.col('Count'))
      .join(
          league_pitch_stats.select(pl.col('pitch_name').alias('Pitch'), pl.col('Velocity').alias('League Avg. Velo')),
          on='Pitch',
          how='inner'
      )
      .sort('Count', descending=True)
      .drop('Count')
  )