import torch from flask import Flask, render_template, request, jsonify import os from transformers import pipeline from gtts import gTTS from pydub import AudioSegment from pydub.silence import detect_nonsilent from waitress import serve from flask import Flask, render_template, request, jsonify, redirect, url_for, session from flask_session import Session # Import the Session class from flask.sessions import SecureCookieSessionInterface # Import the class from salesforce import get_salesforce_connection import os import logging logging.basicConfig(level=logging.INFO) logging.info("This is an info message") logging.error("This is an error message") # Initialize Flask app and Salesforce connection print("Starting app...") app = Flask(__name__) print("Flask app initialized.") # Add debug logs in Salesforce connection setup sf = get_salesforce_connection() print("Salesforce connection established.") # Set the secret key to handle sessions securely app.secret_key = os.getenv("SECRET_KEY", "sSSjyhInIsUohKpG8sHzty2q") # Replace with a secure key # Configure the session type app.config["SESSION_TYPE"] = "filesystem" # Use filesystem for session storage #app.config["SESSION_COOKIE_NAME"] = "my_session" # Optional: Change session cookie name app.config["SESSION_COOKIE_SECURE"] = True # Ensure cookies are sent over HTTPS app.config["SESSION_COOKIE_SAMESITE"] = "None" # Allow cross-site cookies # Initialize the session Session(app) # Correctly initialize the Session object print("Session interface configured.") # Ensure secure session handling for environments like Hugging Face app.session_interface = SecureCookieSessionInterface() print("Session interface configured.") app = Flask(__name__) # Use whisper-small for faster processing and better speed device = "cuda" if torch.cuda.is_available() else "cpu" asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if device == "cuda" else -1) def query_salesforce_data(sf): # Example of querying a customer record try: # Query the Customer_Login__c object customers = sf.query("SELECT Id, Name FROM Customer_Login__c LIMIT 5") # Loop through the records returned by the query for customer in customers['records']: print(customer['Id'], customer['Name']) except Exception as e: print(f"Error querying Salesforce: {e}") result = query_salesforce_data(sf) # Function to generate audio prompts def generate_audio_prompt(text, filename): tts = gTTS(text=text, lang="en") tts.save(os.path.join("static", filename)) # Generate required voice prompts prompts = { "welcome": "Welcome to Biryani Hub.", "ask_name": "Tell me your name.", "ask_email": "Please provide your email address.", "thank_you": "Thank you for registration." } for key, text in prompts.items(): generate_audio_prompt(text, f"{key}.mp3") # Symbol mapping for proper recognition SYMBOL_MAPPING = { "at the rate": "@", "at": "@", "dot": ".", "underscore": "_", "hash": "#", "plus": "+", "dash": "-", "comma": ",", "space": " " } # Function to convert audio to WAV format def convert_to_wav(input_path, output_path): try: audio = AudioSegment.from_file(input_path) audio = audio.set_frame_rate(16000).set_channels(1) # Convert to 16kHz, mono audio.export(output_path, format="wav") except Exception as e: raise Exception(f"Audio conversion failed: {str(e)}") # Function to check if audio contains actual speech def is_silent_audio(audio_path): audio = AudioSegment.from_wav(audio_path) nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16) # Reduced silence duration return len(nonsilent_parts) == 0 # If no speech detected @app.route("/") def index(): return render_template("index.html") @app.route("/transcribe", methods=["POST"]) def transcribe(): if "audio" not in request.files: return jsonify({"error": "No audio file provided"}), 400 audio_file = request.files["audio"] input_audio_path = os.path.join("static", "temp_input.wav") output_audio_path = os.path.join("static", "temp.wav") audio_file.save(input_audio_path) try: # Convert to WAV convert_to_wav(input_audio_path, output_audio_path) # Check for silence if is_silent_audio(output_audio_path): return jsonify({"error": "No speech detected. Please try again."}), 400 # Use Whisper ASR model for transcription result = asr_model(output_audio_path, generate_kwargs={"language": "en"}) transcribed_text = result["text"].strip().capitalize() return jsonify({"text": transcribed_text}) except Exception as e: return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500 # Start Production Server if __name__ == "__main__": serve(app, host="0.0.0.0", port=7860)