import gradio as gr import speech_recognition as sr import torch from transformers import pipeline # Load ASR model (Whisper) device = "cuda" if torch.cuda.is_available() else "cpu" speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=0 if device == "cuda" else -1) # Initialize Speech Recognition recognizer = sr.Recognizer() # Function to Capture Name def capture_name(audio): try: text = speech_to_text(audio)["text"] return f"Name Captured: {text}", "Please provide your email address." except Exception as e: return f"Error: {str(e)}", "" # Function to Capture Email def capture_email(audio): try: text = speech_to_text(audio)["text"] return f"Email Captured: {text}" except Exception as e: return f"Error: {str(e)}" # Gradio Interface def gradio_interface(): with gr.Blocks() as demo: gr.Markdown("### 🎙️ Welcome to Biryani Hub") with gr.Column(): gr.Markdown("#### Step 1: Tell me your name") audio_input_name = gr.Audio(type="filepath", label="Record your Name") name_output = gr.Textbox(label="Your Name:") email_prompt_output = gr.Textbox(label="Next Step:", interactive=False) audio_input_name.change(capture_name, inputs=audio_input_name, outputs=[name_output, email_prompt_output]) gr.Markdown("#### Step 2: Provide your email") audio_input_email = gr.Audio(type="filepath", label="Record your Email") email_output = gr.Textbox(label="Your Email:") audio_input_email.change(capture_email, inputs=audio_input_email, outputs=email_output) return demo # Launch the Gradio Interface demo = gradio_interface() demo.launch(debug=True)