geethareddy commited on
Commit
69067ae
·
verified ·
1 Parent(s): 01b9b78

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -58
app.py CHANGED
@@ -1,70 +1,45 @@
1
- import gradio as gr
2
- import speech_recognition as sr
3
- import torch
4
  import os
 
 
5
  from transformers import pipeline
6
  from gtts import gTTS
7
- import time
8
 
9
- # Load ASR Model (Whisper)
 
 
 
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
  speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=0 if device == "cuda" else -1)
12
 
13
- # Initialize Speech Recognition
14
- recognizer = sr.Recognizer()
15
-
16
- # Function to Play Audio Prompt
17
- def play_audio(text):
18
- tts = gTTS(text=text, lang='en')
19
- filename = "prompt.mp3"
20
  tts.save(filename)
21
- os.system(f"mpg321 {filename}" if os.name != "nt" else f"start {filename}") # Works on Linux & Windows
22
- time.sleep(2) # Give some time for the speech to play
23
 
24
- # Function to Capture Name
25
- def capture_name(audio):
26
- play_audio("Tell me your name")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  try:
28
- text = speech_to_text(audio)["text"]
29
- return f"👤 Name Captured: {text}", "Please provide your email address."
30
  except Exception as e:
31
- return f"❌ Error: {str(e)}", ""
32
-
33
- # Function to Capture Email
34
- def capture_email(audio):
35
- play_audio("Please provide your email address")
36
- try:
37
- text = speech_to_text(audio)["text"]
38
- return f"📧 Email Captured: {text}"
39
- except Exception as e:
40
- return f"❌ Error: {str(e)}"
41
-
42
- # Gradio Interface
43
- def gradio_interface():
44
- with gr.Blocks() as demo:
45
- gr.Markdown("<h1 style='text-align: center;'>🍽️ AI Dining Assistant</h1>")
46
-
47
- with gr.Column():
48
- gr.Image("/mnt/data/image.png", elem_id="header_image", show_label=False) # Upload the image you provided
49
- gr.Markdown("<p style='text-align: center;'>Press the mic button to start...</p>")
50
-
51
- gr.Markdown("#### 🎤 Step 1: Tell me your name")
52
- mic_button = gr.Button("🎙️ Tap to Speak Your Name")
53
- audio_input_name = gr.Audio(type="filepath", visible=False)
54
- name_output = gr.Textbox(label="Your Name:")
55
- email_prompt_output = gr.Textbox(label="Next Step:", interactive=False)
56
-
57
- mic_button.click(capture_name, inputs=audio_input_name, outputs=[name_output, email_prompt_output])
58
-
59
- gr.Markdown("#### 🎤 Step 2: Provide your email")
60
- mic_button_email = gr.Button("🎙️ Tap to Speak Your Email")
61
- audio_input_email = gr.Audio(type="filepath", visible=False)
62
- email_output = gr.Textbox(label="Your Email:")
63
-
64
- mic_button_email.click(capture_email, inputs=audio_input_email, outputs=email_output)
65
-
66
- return demo
67
 
68
- # Launch the Gradio Interface
69
- demo = gradio_interface()
70
- demo.launch(debug=True)
 
1
+ from flask import Flask, render_template, request, jsonify
 
 
2
  import os
3
+ import torch
4
+ import speech_recognition as sr
5
  from transformers import pipeline
6
  from gtts import gTTS
 
7
 
8
+ app = Flask(__name__)
9
+ recognizer = sr.Recognizer()
10
+
11
+ # Load Hugging Face Whisper Model
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
  speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=0 if device == "cuda" else -1)
14
 
15
+ # Function to convert text to speech
16
+ def generate_audio(text, filename="static/output.mp3"):
17
+ tts = gTTS(text=text, lang="en")
 
 
 
 
18
  tts.save(filename)
 
 
19
 
20
+ @app.route("/")
21
+ def home():
22
+ return render_template("index.html")
23
+
24
+ @app.route("/get_prompt")
25
+ def get_prompt():
26
+ generate_audio("Welcome to Biryani Hub. Please tell me your name.", "static/welcome.mp3")
27
+ return jsonify({"audio_url": "/static/welcome.mp3"})
28
+
29
+ @app.route("/process_audio", methods=["POST"])
30
+ def process_audio():
31
+ if "audio" not in request.files:
32
+ return jsonify({"error": "No audio file"}), 400
33
+
34
+ audio_file = request.files["audio"]
35
+ audio_path = "static/temp.wav"
36
+ audio_file.save(audio_path)
37
+
38
  try:
39
+ text = speech_to_text(audio_path)["text"]
40
+ return jsonify({"text": text})
41
  except Exception as e:
42
+ return jsonify({"error": str(e)}), 500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
+ if __name__ == "__main__":
45
+ app.run(host="0.0.0.0", port=7860, debug=True)