Spaces:
Sleeping
Sleeping
from flask import Flask, render_template, request, jsonify | |
import torch | |
from transformers import pipeline | |
from gtts import gTTS | |
import os | |
import re | |
app = Flask(__name__) | |
# Load Whisper Model for English Transcription | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=0 if device == "cuda" else -1) | |
# Function to generate audio prompts | |
def generate_audio_prompt(text, filename): | |
tts = gTTS(text=text, lang="en") | |
tts.save(os.path.join("static", filename)) | |
# Generate audio prompts | |
prompts = { | |
"welcome": "Welcome to Biryani Hub.", | |
"ask_name": "Tell me your name.", | |
"ask_email": "Please provide your email address.", | |
"thank_you": "Thank you for registration." | |
} | |
for key, text in prompts.items(): | |
generate_audio_prompt(text, f"{key}.mp3") | |
# Clean transcribed text to allow only English letters, numbers, and basic punctuation | |
def clean_transcription(text): | |
return re.sub(r"[^a-zA-Z0-9@.\s]", "", text) | |
def index(): | |
return render_template("index.html") | |
def transcribe(): | |
if "audio" not in request.files: | |
return jsonify({"error": "No audio file provided"}), 400 | |
audio_file = request.files["audio"] | |
audio_path = os.path.join("static", "temp.wav") | |
audio_file.save(audio_path) | |
try: | |
# Transcribe audio to text | |
result = asr_model(audio_path, generate_kwargs={"language": "en"}) | |
transcribed_text = clean_transcription(result["text"]) | |
return jsonify({"text": transcribed_text}) | |
except Exception as e: | |
return jsonify({"error": str(e)}), 500 | |
if __name__ == "__main__": | |
app.run(host="0.0.0.0", port=5000, debug=True) | |