voicemenuloginn / app.py
geethareddy's picture
Update app.py
7467739 verified
raw
history blame
1.78 kB
from flask import Flask, render_template, request, jsonify
import torch
from transformers import pipeline
from gtts import gTTS
import os
import re
app = Flask(__name__)
# Load Whisper Model for English Transcription
device = "cuda" if torch.cuda.is_available() else "cpu"
asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=0 if device == "cuda" else -1)
# Function to generate audio prompts
def generate_audio_prompt(text, filename):
tts = gTTS(text=text, lang="en")
tts.save(os.path.join("static", filename))
# Generate audio prompts
prompts = {
"welcome": "Welcome to Biryani Hub.",
"ask_name": "Tell me your name.",
"ask_email": "Please provide your email address.",
"thank_you": "Thank you for registration."
}
for key, text in prompts.items():
generate_audio_prompt(text, f"{key}.mp3")
# Clean transcribed text to allow only English letters, numbers, and basic punctuation
def clean_transcription(text):
return re.sub(r"[^a-zA-Z0-9@.\s]", "", text)
@app.route("/")
def index():
return render_template("index.html")
@app.route("/transcribe", methods=["POST"])
def transcribe():
if "audio" not in request.files:
return jsonify({"error": "No audio file provided"}), 400
audio_file = request.files["audio"]
audio_path = os.path.join("static", "temp.wav")
audio_file.save(audio_path)
try:
# Transcribe audio to text
result = asr_model(audio_path, generate_kwargs={"language": "en"})
transcribed_text = clean_transcription(result["text"])
return jsonify({"text": transcribed_text})
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5000, debug=True)