import cv2 import einops import gradio as gr import numpy as np import torch from diffusers import StableDiffusionControlNetPipeline, ControlNetModel from diffusers import UniPCMultistepScheduler from PIL import Image from controlnet_aux import OpenposeDetector # Constants low_threshold = 100 high_threshold = 200 # Models # controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) # pipe_canny = StableDiffusionControlNetPipeline.from_pretrained( # "runwayml/stable-diffusion-v1-5", controlnet=controlnet_canny, safety_checker=None, torch_dtype=torch.float16 # ) # pipe_canny.scheduler = UniPCMultistepScheduler.from_config(pipe_canny.scheduler.config) # # This command loads the individual model components on GPU on-demand. So, we don't # # need to explicitly call pipe.to("cuda"). # pipe_canny.enable_model_cpu_offload() # pipe_canny.enable_xformers_memory_efficient_attention() # Generator seed, generator = torch.manual_seed(0) torch_dtype = torch.float16 # or torch.bfloat16 (if needed) pose_model = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") controlnet_pose = ControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose", torch_dtype=torch_dtype ).to("cuda") # Load it directly on GPU pipe_pose = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet_pose, safety_checker=None, torch_dtype=torch_dtype ) pipe_pose.scheduler = UniPCMultistepScheduler.from_config(pipe_pose.scheduler.config) # pipe_pose.enable_model_cpu_offload() # ✅ Enable xformers (Optimizes memory usage) pipe_pose.enable_xformers_memory_efficient_attention() # def get_canny_filter(image): # if not isinstance(image, np.ndarray): # image = np.array(image) # image = cv2.Canny(image, low_threshold, high_threshold) # image = image[: # , :, None] # image = np.concatenate([image, image, image], axis=2) # canny_image = Image.fromarray(image) # return canny_image def get_pose(image): return pose_model(image) def process(input_image, prompt, input_control): # TODO: Add other control tasks #if input_control == "Pose": return process_pose(input_image, prompt) # else: # return process_canny(input_image, prompt) # def process_canny(input_image, prompt): # canny_image = get_canny_filter(input_image) # output = pipe_canny( # prompt, # canny_image, # generator=generator, # num_images_per_prompt=1, # num_inference_steps=20, # ) # return [canny_image,output.images[0]] def process_pose(input_image, prompt): pose_image = get_pose(input_image) output = pipe_pose( prompt, pose_image, generator=generator, num_images_per_prompt=1, num_inference_steps=20, ) return [pose_image,output.images[0]] block = gr.Blocks().queue() control_task_list = [ "Canny Edge Map", "Pose" ] with block: gr.Markdown("## Adding Conditional Control to Text-to-Image Diffusion Models") gr.HTML(''' <p style="margin-bottom: 10px; font-size: 94%"> This is an unofficial demo for ControlNet, which is a neural network structure to control diffusion models by adding extra conditions such as canny edge detection. The demo is based on the <a href="https://github.com/lllyasviel/ControlNet" style="text-decoration: underline;" target="_blank"> Github </a> implementation. </p> ''') gr.HTML("<p>You can duplicate this Space to run it privately without a queue and load additional checkpoints. : <a style='display:inline-block' href='https://huggingface.co/spaces/RamAnanth1/ControlNet?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> </p>") with gr.Row(): with gr.Column(): input_image = gr.Image(sources=['upload'], type="numpy") # input_control = gr.Dropdown(control_task_list, value="Scribble", label="Control Task") prompt = gr.Textbox(label="Prompt") run_button = gr.Button(value="Run") with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=2, height='auto') ips = [input_image, prompt] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) examples_list = [ # [ # "bird.png", # "bird", # "Canny Edge Map" # ], # [ # "turtle.png", # "turtle", # "Scribble", # "best quality, extremely detailed", # 'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality', # 1, # 512, # 20, # 9.0, # 123490213, # 0.0, # 100, # 200 # ], [ "pose1.png", "Chef in the Kitchen", "Pose", # "best quality, extremely detailed", # 'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality', # 1, # 512, # 20, # 9.0, # 123490213, # 0.0, # 100, # 200 ] ] examples = gr.Examples(examples=examples_list,inputs = [input_image, prompt], outputs = [result_gallery], cache_examples = True, fn = process) gr.Markdown("") block.launch(debug = True)