Rakesh2205 commited on
Commit
c76f90e
Β·
verified Β·
1 Parent(s): bcd3f43

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -19
README.md CHANGED
@@ -1,6 +1,17 @@
1
- # πŸš€ Multi-Agent Reasoning System for Job Change & ICP Detection
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- ## πŸ“‹ Problem Statement
4
 
5
  You are tasked with designing and implementing a **true multi-agent reasoning solution** (no fixed workflow) that, given partial or complete professional profile data, can autonomously determine whether a given person has changed jobs, identify their current company, assess if they fit a specific Ideal Customer Profile (ICP), and validate their business email.
6
 
@@ -8,7 +19,7 @@ The system should be capable of **dynamic orchestration**, where independent rea
8
 
9
  **The challenge is not to hardcode rules or build a static pipeline, but to create agents that can intelligently reason about the data, decide what other agents or tools to invoke, and resolve ambiguous or incomplete inputs.**
10
 
11
- ## 🎯 Functional Requirements
12
 
13
  ### Core Capabilities
14
  - **Autonomous Reasoning**: The system should be capable of making intelligent decisions on what data to fetch, how to interpret it, and when to request help from other agents.
@@ -22,41 +33,41 @@ The system should be capable of **dynamic orchestration**, where independent rea
22
  - **Business Email Validation**: Identify the most probable business email if one exists.
23
  - **Fault Tolerance**: Handle incomplete, noisy, or conflicting inputs.
24
 
25
- ## πŸ—οΈ Solution Architecture
26
 
27
  ### Multi-Agent System Design
28
  Our solution implements a **LangGraph Supervisor** that orchestrates multiple specialized agents, each with autonomous reasoning capabilities:
29
 
30
- #### πŸ€– **Supervisor Agent**
31
  - **Role**: Central orchestrator that decides which agents to invoke and when
32
  - **Capability**: Dynamic workflow management based on data analysis needs
33
  - **Intelligence**: Routes requests to appropriate agents based on current information state
34
 
35
- #### πŸ” **Profile Researcher Agent**
36
  - **Role**: Primary data gatherer using real-time web search
37
  - **Tools**: Tavily search integration for current professional information
38
  - **Autonomy**: Decides what search queries to run based on available data
39
  - **Output**: Current company, title, and professional status
40
 
41
- #### πŸ’Ό **Job Change Analyst Agent**
42
  - **Role**: Determines employment transitions and company relationships
43
  - **Intelligence**: Analyzes company relationships, mergers, acquisitions, rebranding
44
  - **Reasoning**: Considers multiple factors beyond simple company name matching
45
  - **Output**: Job change status with detailed reasoning
46
 
47
- #### 🎯 **ICP Assessor Agent**
48
  - **Role**: Evaluates fit against Ideal Customer Profile criteria
49
  - **Flexibility**: Adapts to different ICP definitions dynamically
50
  - **Analysis**: Considers role seniority, engineering focus, and leadership level
51
  - **Output**: ICP match status with confidence level
52
 
53
- #### πŸ“§ **Email Finder Agent**
54
  - **Role**: Discovers and validates business email addresses
55
  - **Intelligence**: Uses LLM to generate probable emails based on company research
56
  - **Fallback**: Creates realistic email patterns when exact matches aren't found
57
  - **Output**: Most probable business email with confidence metrics
58
 
59
- ### πŸ”„ Dynamic Orchestration
60
  The system doesn't follow a fixed pipeline. Instead:
61
 
62
  1. **Initial Assessment**: Supervisor analyzes input data completeness
@@ -65,7 +76,7 @@ The system doesn't follow a fixed pipeline. Instead:
65
  4. **Conflict Resolution**: Multiple agents collaborate to resolve discrepancies
66
  5. **Final Synthesis**: Supervisor combines all findings into coherent output
67
 
68
- ## πŸ› οΈ Technical Implementation
69
 
70
  ### Technology Stack
71
  - **LangGraph**: Multi-agent orchestration and workflow management
@@ -81,7 +92,7 @@ The system doesn't follow a fixed pipeline. Instead:
81
  - **Error Handling**: Graceful fallbacks and fault tolerance
82
  - **Extensible Architecture**: Easy to add new agents and capabilities
83
 
84
- ## πŸ“Š Example Use Cases
85
 
86
  ### Example 1: True Job Change
87
  **Input:**
@@ -148,7 +159,7 @@ The system doesn't follow a fixed pipeline. Instead:
148
  3. **ICP Assessor**: Confirms CTO role meets ICP criteria
149
  4. **Email Finder**: Updates email to reflect new company domain
150
 
151
- ## 🎯 Evaluation Criteria
152
 
153
  ### 1. **Reasoning Quality**
154
  - How well the system dynamically decides what to do next and why
@@ -170,7 +181,7 @@ The system doesn't follow a fixed pipeline. Instead:
170
  - Ability to extend the system to other reasoning tasks without re-architecting
171
  - **Our Solution**: Modular agent design with easy addition of new capabilities
172
 
173
- ## πŸš€ Getting Started
174
 
175
  ### Prerequisites
176
  - Python 3.10+
@@ -220,7 +231,7 @@ result = analyze_profile({
220
  print(result.model_dump())
221
  ```
222
 
223
- ## πŸ” System Capabilities
224
 
225
  ### Autonomous Decision Making
226
  - **Data Prioritization**: Agents decide what information to gather first
@@ -237,7 +248,7 @@ print(result.model_dump())
237
  - **Error Recovery**: Continues analysis even when individual agents fail
238
  - **Confidence Metrics**: Provides reliability indicators for all outputs
239
 
240
- ## πŸš€ Future Enhancements
241
 
242
  ### Planned Capabilities
243
  - **Industry-Specific ICPs**: Specialized criteria for different sectors
@@ -250,7 +261,7 @@ print(result.model_dump())
250
  - **Custom Tools**: Integration with additional data sources
251
  - **Workflow Customization**: Configurable agent interaction patterns
252
 
253
- ## πŸ“ˆ Performance Metrics
254
 
255
  ### Current Capabilities
256
  - **Response Time**: 30-60 seconds for complete analysis
@@ -264,7 +275,7 @@ print(result.model_dump())
264
  - **Reasoning Traces**: Detailed explanation of agent decisions
265
  - **Fallback Indicators**: When alternative methods were used
266
 
267
- ## 🀝 Contributing
268
 
269
  This system demonstrates advanced multi-agent reasoning capabilities. Contributions are welcome for:
270
 
@@ -273,7 +284,7 @@ This system demonstrates advanced multi-agent reasoning capabilities. Contributi
273
  - **Performance Optimization**: Faster analysis and better accuracy
274
  - **Documentation**: Improved usage examples and tutorials
275
 
276
- ## πŸ“„ License
277
 
278
  This project is open source and available under the MIT License.
279
 
 
1
+ ---
2
+ title: Multi-Agent Reasoning System for Job Change & ICP Detection
3
+ emoji: πŸ€–
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: "4.44.0"
8
+ app_file: supervisor_agent.py
9
+ pinned: false
10
+ ---
11
+
12
+ # Multi-Agent Reasoning System for Job Change & ICP Detection
13
 
14
+ ## Problem Statement
15
 
16
  You are tasked with designing and implementing a **true multi-agent reasoning solution** (no fixed workflow) that, given partial or complete professional profile data, can autonomously determine whether a given person has changed jobs, identify their current company, assess if they fit a specific Ideal Customer Profile (ICP), and validate their business email.
17
 
 
19
 
20
  **The challenge is not to hardcode rules or build a static pipeline, but to create agents that can intelligently reason about the data, decide what other agents or tools to invoke, and resolve ambiguous or incomplete inputs.**
21
 
22
+ ## Functional Requirements
23
 
24
  ### Core Capabilities
25
  - **Autonomous Reasoning**: The system should be capable of making intelligent decisions on what data to fetch, how to interpret it, and when to request help from other agents.
 
33
  - **Business Email Validation**: Identify the most probable business email if one exists.
34
  - **Fault Tolerance**: Handle incomplete, noisy, or conflicting inputs.
35
 
36
+ ## Solution Architecture
37
 
38
  ### Multi-Agent System Design
39
  Our solution implements a **LangGraph Supervisor** that orchestrates multiple specialized agents, each with autonomous reasoning capabilities:
40
 
41
+ #### **Supervisor Agent**
42
  - **Role**: Central orchestrator that decides which agents to invoke and when
43
  - **Capability**: Dynamic workflow management based on data analysis needs
44
  - **Intelligence**: Routes requests to appropriate agents based on current information state
45
 
46
+ #### **Profile Researcher Agent**
47
  - **Role**: Primary data gatherer using real-time web search
48
  - **Tools**: Tavily search integration for current professional information
49
  - **Autonomy**: Decides what search queries to run based on available data
50
  - **Output**: Current company, title, and professional status
51
 
52
+ #### **Job Change Analyst Agent**
53
  - **Role**: Determines employment transitions and company relationships
54
  - **Intelligence**: Analyzes company relationships, mergers, acquisitions, rebranding
55
  - **Reasoning**: Considers multiple factors beyond simple company name matching
56
  - **Output**: Job change status with detailed reasoning
57
 
58
+ #### **ICP Assessor Agent**
59
  - **Role**: Evaluates fit against Ideal Customer Profile criteria
60
  - **Flexibility**: Adapts to different ICP definitions dynamically
61
  - **Analysis**: Considers role seniority, engineering focus, and leadership level
62
  - **Output**: ICP match status with confidence level
63
 
64
+ #### **Email Finder Agent**
65
  - **Role**: Discovers and validates business email addresses
66
  - **Intelligence**: Uses LLM to generate probable emails based on company research
67
  - **Fallback**: Creates realistic email patterns when exact matches aren't found
68
  - **Output**: Most probable business email with confidence metrics
69
 
70
+ ### Dynamic Orchestration
71
  The system doesn't follow a fixed pipeline. Instead:
72
 
73
  1. **Initial Assessment**: Supervisor analyzes input data completeness
 
76
  4. **Conflict Resolution**: Multiple agents collaborate to resolve discrepancies
77
  5. **Final Synthesis**: Supervisor combines all findings into coherent output
78
 
79
+ ## Technical Implementation
80
 
81
  ### Technology Stack
82
  - **LangGraph**: Multi-agent orchestration and workflow management
 
92
  - **Error Handling**: Graceful fallbacks and fault tolerance
93
  - **Extensible Architecture**: Easy to add new agents and capabilities
94
 
95
+ ## Example Use Cases
96
 
97
  ### Example 1: True Job Change
98
  **Input:**
 
159
  3. **ICP Assessor**: Confirms CTO role meets ICP criteria
160
  4. **Email Finder**: Updates email to reflect new company domain
161
 
162
+ ## s Evaluation Criteria
163
 
164
  ### 1. **Reasoning Quality**
165
  - How well the system dynamically decides what to do next and why
 
181
  - Ability to extend the system to other reasoning tasks without re-architecting
182
  - **Our Solution**: Modular agent design with easy addition of new capabilities
183
 
184
+ ## Getting Started
185
 
186
  ### Prerequisites
187
  - Python 3.10+
 
231
  print(result.model_dump())
232
  ```
233
 
234
+ ## System Capabilities
235
 
236
  ### Autonomous Decision Making
237
  - **Data Prioritization**: Agents decide what information to gather first
 
248
  - **Error Recovery**: Continues analysis even when individual agents fail
249
  - **Confidence Metrics**: Provides reliability indicators for all outputs
250
 
251
+ ## Future Enhancements
252
 
253
  ### Planned Capabilities
254
  - **Industry-Specific ICPs**: Specialized criteria for different sectors
 
261
  - **Custom Tools**: Integration with additional data sources
262
  - **Workflow Customization**: Configurable agent interaction patterns
263
 
264
+ ## Performance Metrics
265
 
266
  ### Current Capabilities
267
  - **Response Time**: 30-60 seconds for complete analysis
 
275
  - **Reasoning Traces**: Detailed explanation of agent decisions
276
  - **Fallback Indicators**: When alternative methods were used
277
 
278
+ ## Contributing
279
 
280
  This system demonstrates advanced multi-agent reasoning capabilities. Contributions are welcome for:
281
 
 
284
  - **Performance Optimization**: Faster analysis and better accuracy
285
  - **Documentation**: Improved usage examples and tutorials
286
 
287
+ ## License
288
 
289
  This project is open source and available under the MIT License.
290