Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import gradio as gr | |
# Initialize the pipeline with TensorFlow | |
pipe = pipeline("text-classification", model="ZachBeesley/Spam-Detector", framework="tf") | |
# Function to process the input text and return the predicted label | |
def predict(text): | |
try: | |
# Use the pipeline to classify the text | |
result = pipe(text) | |
# Extract the predicted label and confidence score | |
label = result[0]["label"] | |
confidence = result[0]["score"] | |
# Return the result | |
return f"Predicted label: {label}\nConfidence: {confidence:.2f}" | |
except Exception as e: | |
# Handle errors | |
return f"Error: {str(e)}" | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Textbox(label="Email Text", placeholder="Paste your email text here..."), | |
outputs="text", | |
title="Spam Email Detector", | |
description="Enter an email and find out if it's spam or not." | |
) | |
# Launch the interface | |
iface.launch() | |