Spaces:
Sleeping
Sleeping
File size: 33,469 Bytes
d89ed60 acd8c3d d89ed60 acd8c3d d89ed60 acd8c3d d89ed60 acd8c3d d89ed60 acd8c3d d89ed60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 |
#!/usr/bin/env python3
"""
LLM Compatibility Advisor - Streamlined with Download Sizes
Author: Assistant
Description: Provides device-based LLM recommendations with popular models and download sizes
Requirements: streamlit, pandas, plotly, openpyxl
"""
import streamlit as st
from run2 import run_app2
import pandas as pd
import numpy as np
import re
import plotly.express as px
import plotly.graph_objects as go
from typing import Optional, Tuple, List, Dict
from run3 import estimate_training_time_and_cost,get_gpu_teraflops,get_gpu_cost_per_tflop_hour
from utils import get_all_models_from_database
# โ
MUST be the first Streamlit command
st.set_page_config(
page_title="LLM Compatibility Advisor",
layout="wide",
page_icon="",
initial_sidebar_state="expanded"
)
# Enhanced data loading with error handling
def run_app1():
# ... place all existing logic from `streamlit_app.py` here ...
if __name__ == "__main__":
run_app1()
@st.cache_data
def load_data():
paths = [
"src/BITS_INTERNS.xlsx",
"src/ICFAI.xlsx"
]
combined_df = pd.DataFrame()
for path in paths:
try:
df = pd.read_excel(path, sheet_name="Form Responses 1")
df.columns = df.columns.str.strip()
combined_df = pd.concat([combined_df, df], ignore_index=True)
except FileNotFoundError:
return None, f"Excel file '{path}' not found. Please upload the file."
except Exception as e:
return None, f"Error loading '{path}': {str(e)}"
# Return success case - this was missing!
if combined_df.empty:
return None, "No data found in Excel files."
else:
return combined_df, None
# Enhanced RAM extraction with better parsing
def extract_numeric_ram(ram) -> Optional[int]:
if pd.isna(ram):
return None
ram_str = str(ram).lower().replace(" ", "")
# Handle various formats: "8GB", "8 GB", "8gb", "8192MB", etc.
gb_match = re.search(r"(\d+(?:\.\d+)?)(?:gb|g)", ram_str)
if gb_match:
return int(float(gb_match.group(1)))
# Handle MB format
mb_match = re.search(r"(\d+)(?:mb|m)", ram_str)
if mb_match:
return max(1, int(int(mb_match.group(1)) / 1024)) # Convert MB to GB
# Handle plain numbers (assume GB)
plain_match = re.search(r"(\d+)", ram_str)
if plain_match:
return int(plain_match.group(1))
return None
# Streamlined LLM database with popular models and download sizes
LLM_DATABASE = {
"ultra_low": { # โค2GB
"general": [
{"name": "TinyLlama-1.1B-Chat", "size": "637MB", "description": "Compact chat model", "cost(A100)":"โน1,21,929", "cost(H100)":"โน53,796"},
{"name": "DistilBERT-base", "size": "268MB", "description": "Efficient BERT variant", "cost(A100)": "โน12,193","cost(H100)":"โน5,380"},
{"name": "all-MiniLM-L6-v2", "size": "91MB", "description": "Sentence embeddings", "cost(A100)":"โน4,024", "cost(H100)":"โน1,775"}
],
"code": [
{"name": "CodeT5-small", "size": "242MB", "description": "Code generation", "cost(A100)":"โน12,193","cost(H100)":"โน5,380"},
{"name": "Replit-code-v1-3B", "size": "1.2GB", "description": "Code completion", "cost(A100)":"โน3,65,787","cost(H100)":"โน1,61,388"}
]
},
"low": { # 3-4GB
"general": [
{"name": "Phi-1.5", "size": "2.8GB", "description": "Microsoft's efficient model", "cost(A100)":"โน1,58,507","cost(H100)":"โน70,023"},
{"name": "Gemma-2B", "size": "1.4GB", "description": "Google's compact model", "cost(A100)":"โน2,43,858","cost(H100)":"โน1,07,592"},
{"name": "OpenLLaMA-3B", "size": "2.1GB", "description": "Open source LLaMA", "cost(A100)": "โน3,65,787","cost(H100)":"โน1,61,388"}
],
"code": [
{"name": "CodeGen-2B", "size": "1.8GB", "description": "Salesforce code model", "cost(A100)":"โน2,43,858","cost(H100)":"โน1,07,592"},
{"name": "StarCoder-1B", "size": "1.1GB", "description": "BigCode project", "cost(A100)":"โน1,21,929","cost(H100)":"โน53,796"}
],
"chat": [
{"name": "Alpaca-3B", "size": "2.0GB", "description": "Stanford's instruction model", "cost(A100)": "โน3,65,787","cost(H100)":"โน1,61,388"},
{"name": "Vicuna-3B", "size": "2.1GB", "description": "ChatGPT-style training","cost(A100)":"โน3,65,787","cost(H100)":"โน1,61,388"}
]
},
"moderate_low": { # 5-6GB
"general": [
{"name": "Phi-2", "size": "5.2GB", "description": "Microsoft's 2.7B model", "cost(A100)":"โน3,29,209","cost(H100)":"โน1,45,249"},
{"name": "Gemma-7B-it", "size": "4.2GB", "description": "Google instruction tuned", "cost(A100)":"โน8,53,501","cost(H100)":"โน3,76,572"},
{"name": "Mistral-7B-v0.1", "size": "4.1GB", "description": "Mistral AI base model", "cost(A100)":"โน8,53,501","cost(H100)":"โน3,76,572"}
],
"code": [
{"name": "CodeLlama-7B", "size": "3.8GB", "description": "Meta's code specialist","cost(A100)": "โน8,53,501","cost(H100)":"โน3,76,572"},
{"name": "StarCoder-7B", "size": "4.0GB", "description": "Code generation expert", "cost(A100)":"โน8,53,501","cost(H100)":"โน3,76,572"}
],
"chat": [
{"name": "Zephyr-7B-beta", "size": "4.2GB", "description": "HuggingFace chat model", "cost(A100)":"โน8,53,501","cost(H100)":"3,76,572"},
{"name": "Neural-Chat-7B", "size": "4.1GB", "description": "Intel optimized", "cost(A100)": "โน8,53,501","cost(H100)":"โน3,76,572"}
]
},
"moderate": { # 7-8GB
"general": [
{"name": "Llama-2-7B-Chat", "size": "3.5GB", "description": "Meta's popular chat model", "cost(A100)":"โน8,53,501","cost(H100)":"โน3,76,572"},
{"name": "Mistral-7B-Instruct-v0.2", "size": "4.1GB", "description": "Latest Mistral instruct", "cost(A100)":"โน8,53,501","cost(H100)":"โน3,76,572"},
{"name": "Qwen-7B-Chat", "size": "4.0GB", "description": "Alibaba's multilingual","cost(A100)": "โน8,53,501","cost(H100)":"โน3,76,572"}
],
"code": [
{"name": "CodeLlama-7B-Instruct", "size": "3.8GB", "description": "Instruction-tuned CodeLlama", "cost(A100)":"โน8,53,501","cost(H100)":"โน3,76,572"},
{"name": "WizardCoder-7B", "size": "4.0GB", "description": "Enhanced coding abilities", "cost(A100)":"โน8,53,501","cost(H100)":"โน3,76,572"},
{"name": "Phind-CodeLlama-34B-v2", "size": "4.2GB", "description": "4-bit quantized version", "cost(A100)": "โน8,53,501","cost(H100)":"โน3,76,572"}
],
"reasoning": [
{"name": "WizardMath-7B", "size": "4.0GB", "description": "Mathematical reasoning", "cost(A100)":"โน8,53,501","cost(H100)":"โน3,76,572"},
{"name": "MetaMath-7B", "size": "3.9GB", "description": "Math problem solving","cost(A100)":"โน8,53,501","cost(H100)":"โน3,76,572"}
]
},
"good": { # 9-16GB
"general": [
{"name": "Llama-2-13B-Chat", "size": "7.3GB", "description": "Larger Llama variant", "cost(A100)":"โน15,81,072","cost(H100)":"โน6,97,344"},
{"name": "Vicuna-13B-v1.5", "size": "7.2GB", "description": "Enhanced Vicuna", "cost(A100)":"โน15,81,072","cost(H100)":"โน6,97,344"},
{"name": "OpenChat-3.5", "size": "7.1GB", "description": "High-quality chat model", "cost(A100)":"โน15,81,072","cost(H100)":"โน6,97,344"}
],
"code": [
{"name": "CodeLlama-13B-Instruct", "size": "7.3GB", "description": "Larger code model", "cost(A100)":"โน15,81,072","cost(H100)":"โน6,97,344"},
{"name": "WizardCoder-15B", "size": "8.2GB", "description": "Advanced coding", "cost(A100)":"โน18,28,931","cost(H100)":"โน8,06,937"},
{"name": "StarCoder-15B", "size": "8.5GB", "description": "Large code model", "cost(A100)": "โน18,28,931","cost(H100)":"โน8,06,937"}
],
"multimodal": [
{"name": "LLaVA-7B", "size": "7.0GB", "description": "Vision + language","cost(A100)":"โน8,53,501","cost(H100)":"โน3,76,572"},
{"name": "MiniGPT-4-7B", "size": "6.8GB", "description": "Multimodalchat","cost(A100)":"โน8,53,501","cost(H100)":"โน3,76,572"}
],
"reasoning": [
{"name": "WizardMath-13B", "size": "7.3GB", "description": "Advanced math","cost(A100)":"โน15,81,072","cost(H100)":"โน6,97,344"},
{"name": "Orca-2-13B", "size": "7.4GB", "description": "Microsoft reasoning", "cost(A100)":"โน15,81,072","cost(H100)":"โน6,97,344"}
]
},
"high": { # 17-32GB
"general": [
{"name": "Mixtral-8x7B-Instruct-v0.1", "size": "26.9GB", "description": "Mixture of experts","cost(A100)":"โน8,53,501","cost(H100)":"โน3,76,572"},
{"name": "Llama-2-70B-Chat", "size": "38.0GB", "description": "8-bit quantized", "cost(A100)":"โน85,35,004","cost(H100)":"โน37,65,715"},
{"name": "Yi-34B-Chat", "size": "19.5GB", "description": "01.AI's large model", "cost(A100)":"โน41,45,586","cost(H100)":"โน18,25,785"}
],
"code": [
{"name": "CodeLlama-34B-Instruct", "size": "19.0GB", "description": "Large code specialist", "cost(A100)":"โน41,45,586","cost(H100)":"โน18,25,785"},
{"name": "DeepSeek-Coder-33B", "size": "18.5GB", "description": "DeepSeek's coder", "cost(A100)":"โน40,23,393","cost(H100)":"โน17,71,989"},
{"name": "WizardCoder-34B", "size": "19.2GB", "description": "Enterprise coding", "cost(A100)":"โน41,45,586","cost(H100)":"โน18,25,785"}
],
"reasoning": [
{"name": "WizardMath-70B", "size": "38.5GB", "description": "8-bit quantized math", "cost(A100)":"โน85,35,004","cost(H100)":"โน37,65,715"},
{"name": "MetaMath-70B", "size": "38.0GB", "description": "8-bit math reasoning", "cost(A100)":"โน85,35,004","cost(H100)":"โน37,65,715"}
]
},
"ultra_high": { # >32GB
"general": [
{"name": "Llama-2-70B", "size": "130GB", "description": "Full precision", "cost(A100)":"โน85,35,004","cost(H100)":"โน37,65,715"},
{"name": "Mixtral-8x22B", "size": "176GB", "description": "Latest mixture model","cost(A100)":"โน2,14,59,516","cost(H100)":"โน94,61,302"},
{"name": "Qwen-72B", "size": "145GB", "description": "Alibaba's flagship", "cost(A100)":"โน87,89,394","cost(H100)":"โน38,80,798"}
],
"code": [
{"name": "CodeLlama-34B", "size": "68GB", "description": "Full precision code", "cost(A100)":"โน41,45,586","cost(H100)":"โน18,25,785"},
{"name": "DeepSeek-Coder-33B", "size": "66GB", "description": "Full precision coding", "cost(A100)":"โน40,23,393","cost(H100)":"โน17,71,989"}
],
"reasoning": [
{"name": "WizardMath-70B", "size": "130GB", "description": "Full precision math", "cost(A100)":"โน85,35,004","cost(H100)":"โน37,65,715"},
{"name": "Goat-70B", "size": "132GB", "description": "Arithmetic reasoning", "cost(A100)":"โน85,35,004","cost(H100)":"โน37,65,715"}
]
}
}
# Enhanced LLM recommendation with performance tiers
def recommend_llm(ram_str) -> Tuple[str, str, str, Dict[str, List[Dict]]]:
"""Returns (recommendation, performance_tier, additional_info, detailed_models)"""
ram = extract_numeric_ram(ram_str)
if ram is None:
return ("โช Check exact specs or test with quantized models.",
"Unknown",
"Verify RAM specifications",
{})
if ram <= 2:
models = LLM_DATABASE["ultra_low"]
return ("๐ธ Ultra-lightweight models - basic NLP tasks",
"Ultra Low",
"Mobile-optimized, simple tasks, limited context",
models)
elif ram <= 4:
models = LLM_DATABASE["low"]
return ("๐ธ Small language models - decent capabilities",
"Low",
"Basic chat, simple reasoning, text classification",
models)
elif ram <= 6:
models = LLM_DATABASE["moderate_low"]
return ("๐ Mid-range models - good general performance",
"Moderate-Low",
"Solid reasoning, coding help, longer conversations",
models)
elif ram <= 8:
models = LLM_DATABASE["moderate"]
return ("๐ Strong 7B models - excellent capabilities",
"Moderate",
"Professional use, coding assistance, complex reasoning",
models)
elif ram <= 16:
models = LLM_DATABASE["good"]
return ("๐ข High-quality models - premium performance",
"Good",
"Advanced tasks, multimodal support, research use",
models)
elif ram <= 32:
models = LLM_DATABASE["high"]
return ("๐ต Premium models - professional grade",
"High",
"Enterprise ready, complex reasoning, specialized tasks",
models)
else:
models = LLM_DATABASE["ultra_high"]
return ("๐ต Top-tier models - enterprise capabilities",
"Ultra High",
"Research grade, maximum performance, domain expertise",
models)
# Enhanced OS detection with better icons
def get_os_info(os_name) -> Tuple[str, str]:
"""Returns (icon, clean_name)"""
if pd.isna(os_name):
return "๐ป", "Not specified"
os = str(os_name).lower()
if "windows" in os:
return "๐ช", os_name
elif "mac" in os or "darwin" in os:
return "๐", os_name
elif "linux" in os or "ubuntu" in os:
return "๐ง", os_name
elif "android" in os:
return "๐ค", os_name
elif "ios" in os:
return "๐ฑ", os_name
else:
return "๐ป", os_name
# Performance visualization
def create_performance_chart(df):
"""Create a performance distribution chart"""
laptop_rams = df["Laptop RAM"].apply(extract_numeric_ram).dropna()
mobile_rams = df["Mobile RAM"].apply(extract_numeric_ram).dropna()
fig = go.Figure()
fig.add_trace(go.Histogram(
x=laptop_rams,
name="Laptop RAM",
opacity=0.7,
nbinsx=10
))
fig.add_trace(go.Histogram(
x=mobile_rams,
name="Mobile RAM",
opacity=0.7,
nbinsx=10
))
fig.update_layout(
title="RAM Distribution Across Devices",
xaxis_title="RAM (GB)",
yaxis_title="Number of Students",
barmode='overlay',
height=400
)
return fig
# Enhanced model details display function
def display_model_categories(models_dict: Dict[str, List[Dict]], ram_gb: int):
"""Display models organized by category with download sizes"""
if not models_dict:
return
st.markdown(f"### ๐ฏ Recommended Models for {ram_gb}GB RAM:")
for category, model_list in models_dict.items():
if model_list:
with st.expander(f"๐ {category.replace('_', ' ').title()} Models"):
for model in model_list[:8]: # Limit to top 8 per category
col1, col2, col3, col4 = st.columns([3, 1, 2, 4])
with col1:
st.markdown(f"**{model['name']}**")
with col2:
st.markdown(f"`{model['size']}`")
with col3:
st.markdown(f"*{model['description']}*")
with col4:
st.markdown(f"*{model['cost(A100)']}*")
# Demo data generator for when Excel files are not available
def generate_demo_data():
"""Generate demo data for testing when Excel files are missing"""
demo_data = {
"Full Name": [
"Demo Student 1", "Demo Student 2", "Demo Student 3", "Demo Student 4",
"Demo Student 5", "Demo Student 6", "Demo Student 7", "Demo Student 8"
],
"Laptop RAM": ["8GB", "16GB", "4GB", "32GB", "6GB", "12GB", "2GB", "24GB"],
"Mobile RAM": ["4GB", "8GB", "3GB", "12GB", "6GB", "4GB", "2GB", "8GB"],
"Laptop Operating System": [
"Windows 11", "macOS Monterey", "Ubuntu 22.04", "Windows 10",
"macOS Big Sur", "Fedora 36", "Windows 11", "macOS Ventura"
],
"Mobile Operating System": [
"Android 13", "iOS 16", "Android 12", "iOS 15",
"Android 14", "iOS 17", "Android 11", "iOS 16"
]
}
return pd.DataFrame(demo_data)
# Function to safely prepare user options
def prepare_user_options(df):
"""Safely prepare user options for selectbox, handling NaN values and mixed types"""
try:
# Get unique names and filter out NaN values
unique_names = df["Full Name"].dropna().unique()
# Convert to strings and filter out any remaining non-string values
valid_names = []
for name in unique_names:
try:
str_name = str(name).strip()
if str_name and str_name.lower() != 'nan':
valid_names.append(str_name)
except:
continue
# Create options list with proper string concatenation
options = ["Select a student..."] + sorted(valid_names)
return options
except Exception as e:
st.error(f"Error preparing user options: {e}")
return ["Select a student..."]
# Main App
st.title(" LLM Compatibility Advisor")
tab1, tab2,tab3 = st.tabs(["๐ Dataset Analysis", " Manual Spec Entry","LLM Training Time Estimator"])
with tab1:
st.markdown("Get personalized recommendations from **150+ popular open source AI models** with download sizes!")
# Load data with better error handling
df, error = load_data()
if error or df is None or df.empty:
st.warning("โ ๏ธ Excel files not found. Running with demo data for testing.")
st.info("๐ To use real data, place 'BITS_INTERNS.xlsx' and 'ICFAI.xlsx' in the 'src/' directory.")
df = generate_demo_data()
with st.expander("๐ Expected Data Format"):
st.markdown("""
The app expects Excel files with the following columns:
- **Full Name**: Student name
- **Laptop RAM**: RAM specification (e.g., "8GB", "16 GB", "8192MB")
- **Mobile RAM**: Mobile device RAM
- **Laptop Operating System**: OS name
- **Mobile Operating System**: Mobile OS name
""")
# Verify required columns exist
required_columns = ["Full Name", "Laptop RAM", "Mobile RAM"]
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Missing required columns: {missing_columns}")
st.info("Please ensure your Excel file contains the required columns.")
st.stop()
# Clean the dataframe
df = df.copy()
df["Full Name"] = df["Full Name"].astype(str).str.strip()
# Sidebar filters and info
with st.sidebar:
st.header("๐ Filters & Info")
# Performance tier filter
performance_filter = st.multiselect(
"Filter by Performance Tier:",
["Ultra Low", "Low", "Moderate-Low", "Moderate", "Good", "High", "Ultra High", "Unknown"],
default=["Ultra Low", "Low", "Moderate-Low", "Moderate", "Good", "High", "Ultra High", "Unknown"]
)
# Model category filter
st.subheader("Model Categories")
show_categories = st.multiselect(
"Show specific categories:",
["general", "code", "chat", "reasoning", "multimodal"],
default=["general", "code", "chat"]
)
st.markdown("---")
st.markdown("### ๐ Quick Stats")
st.metric("Total Students", len(df))
st.metric("Popular Models", "150+")
# Calculate average RAM
avg_laptop_ram = df["Laptop RAM"].apply(extract_numeric_ram).mean()
avg_mobile_ram = df["Mobile RAM"].apply(extract_numeric_ram).mean()
if not pd.isna(avg_laptop_ram):
st.metric("Avg Laptop RAM", f"{avg_laptop_ram:.1f} GB")
if not pd.isna(avg_mobile_ram):
st.metric("Avg Mobile RAM", f"{avg_mobile_ram:.1f} GB")
# User selection with search - FIXED VERSION
st.subheader("๐ค Individual Student Analysis")
# Prepare options safely
user_options = prepare_user_options(df)
selected_user = st.selectbox(
"Choose a student:",
options=user_options,
index=0 # Default to first option ("Select a student...")
)
if selected_user and selected_user != "Select a student...":
# Find user data with safe lookup
user_data_mask = df["Full Name"].astype(str).str.strip() == selected_user
if user_data_mask.any():
user_data = df[user_data_mask].iloc[0]
# Enhanced user display
col1, col2 = st.columns(2)
with col1:
st.markdown("### ๐ป Laptop Configuration")
laptop_os_icon, laptop_os_name = get_os_info(user_data.get('Laptop Operating System'))
laptop_ram = user_data.get('Laptop RAM', 'Not specified')
laptop_rec, laptop_tier, laptop_info, laptop_models = recommend_llm(laptop_ram)
laptop_ram_gb = extract_numeric_ram(laptop_ram) or 0
st.markdown(f"**OS:** {laptop_os_icon} {laptop_os_name}")
st.markdown(f"**RAM:** {laptop_ram}")
st.markdown(f"**Performance Tier:** {laptop_tier}")
st.success(f"**๐ก Recommendation:** {laptop_rec}")
st.info(f"**โน๏ธ Notes:** {laptop_info}")
# Display detailed models for laptop
if laptop_models:
filtered_models = {k: v for k, v in laptop_models.items() if k in show_categories}
display_model_categories(filtered_models, laptop_ram_gb)
with col2:
st.markdown("### ๐ฑ Mobile Configuration")
mobile_os_icon, mobile_os_name = get_os_info(user_data.get('Mobile Operating System'))
mobile_ram = user_data.get('Mobile RAM', 'Not specified')
mobile_rec, mobile_tier, mobile_info, mobile_models = recommend_llm(mobile_ram)
mobile_ram_gb = extract_numeric_ram(mobile_ram) or 0
st.markdown(f"**OS:** {mobile_os_icon} {mobile_os_name}")
st.markdown(f"**RAM:** {mobile_ram}")
st.markdown(f"**Performance Tier:** {mobile_tier}")
st.success(f"**๐ก Recommendation:** {mobile_rec}")
st.info(f"**โน๏ธ Notes:** {mobile_info}")
# Display detailed models for mobile
if mobile_models:
filtered_models = {k: v for k, v in mobile_models.items() if k in show_categories}
display_model_categories(filtered_models, mobile_ram_gb)
# Batch Analysis Section
st.markdown("---")
st.header("๐ Batch Analysis & Insights")
# Create enhanced batch table
df_display = df[["Full Name", "Laptop RAM", "Mobile RAM"]].copy()
# Add recommendations and performance tiers
laptop_recommendations = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[0])
mobile_recommendations = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[0])
laptop_tiers = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[1])
mobile_tiers = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[1])
df_display["Laptop LLM"] = laptop_recommendations
df_display["Mobile LLM"] = mobile_recommendations
df_display["Laptop Tier"] = laptop_tiers
df_display["Mobile Tier"] = mobile_tiers
# Filter based on sidebar selections
mask = (laptop_tiers.isin(performance_filter) | mobile_tiers.isin(performance_filter))
df_filtered = df_display[mask]
# Display filtered table
st.subheader(f"๐ Student Recommendations ({len(df_filtered)} students)")
st.dataframe(
df_filtered,
use_container_width=True,
column_config={
"Full Name": st.column_config.TextColumn("Student Name", width="medium"),
"Laptop RAM": st.column_config.TextColumn("Laptop RAM", width="small"),
"Mobile RAM": st.column_config.TextColumn("Mobile RAM", width="small"),
"Laptop LLM": st.column_config.TextColumn("Laptop Recommendation", width="large"),
"Mobile LLM": st.column_config.TextColumn("Mobile Recommendation", width="large"),
"Laptop Tier": st.column_config.TextColumn("L-Tier", width="small"),
"Mobile Tier": st.column_config.TextColumn("M-Tier", width="small"),
}
)
# Performance distribution chart
if len(df) > 1:
st.subheader("๐ RAM Distribution Analysis")
fig = create_performance_chart(df)
st.plotly_chart(fig, use_container_width=True)
# Performance tier summary
st.subheader("๐ฏ Performance Tier Summary")
tier_col1, tier_col2 = st.columns(2)
with tier_col1:
st.markdown("**Laptop Performance Tiers:**")
laptop_tier_counts = laptop_tiers.value_counts()
for tier, count in laptop_tier_counts.items():
percentage = (count / len(laptop_tiers)) * 100
st.write(f"โข {tier}: {count} students ({percentage:.1f}%)")
with tier_col2:
st.markdown("**Mobile Performance Tiers:**")
mobile_tier_counts = mobile_tiers.value_counts()
for tier, count in mobile_tier_counts.items():
percentage = (count / len(mobile_tier_counts)) * 100
st.write(f"โข {tier}: {count} students ({percentage:.1f}%)")
# Model Explorer Section
st.markdown("---")
st.header("๐ Popular Model Explorer")
explorer_col1, explorer_col2 = st.columns(2)
with explorer_col1:
selected_ram_range = st.selectbox(
"Select RAM range to explore models:",
["โค2GB (Ultra Low)", "3-4GB (Low)", "5-6GB (Moderate-Low)",
"7-8GB (Moderate)", "9-16GB (Good)", "17-32GB (High)", ">32GB (Ultra High)"]
)
with explorer_col2:
selected_category = st.selectbox(
"Select model category:",
["general", "code", "chat", "reasoning", "multimodal"]
)
# Map selection to database key
ram_mapping = {
"โค2GB (Ultra Low)": "ultra_low",
"3-4GB (Low)": "low",
"5-6GB (Moderate-Low)": "moderate_low",
"7-8GB (Moderate)": "moderate",
"9-16GB (Good)": "good",
"17-32GB (High)": "high",
">32GB (Ultra High)": "ultra_high"
}
selected_ram_key = ram_mapping[selected_ram_range]
if selected_ram_key in LLM_DATABASE and selected_category in LLM_DATABASE[selected_ram_key]:
models = LLM_DATABASE[selected_ram_key][selected_category]
st.subheader(f"๐ฏ {selected_category.title()} Models for {selected_ram_range}")
# Display models in a detailed table
for model in models:
with st.container():
col1, col2, col3 = st.columns([3, 1, 3])
with col1:
st.markdown(f"### {model['name']}")
with col2:
st.markdown(f"**{model['size']}**")
st.caption("Download Size")
with col3:
st.markdown(f"*{model['description']}*")
# Add download suggestion
if "Llama" in model['name']:
st.caption("๐ Available on Hugging Face & Ollama")
elif "Mistral" in model['name']:
st.caption("๐ Available on Hugging Face & Mistral AI")
elif "Gemma" in model['name']:
st.caption("๐ Available on Hugging Face & Google")
else:
st.caption("๐ Available on Hugging Face")
st.markdown("---")
else:
st.info(f"No {selected_category} models available for {selected_ram_range}")
# Enhanced reference guide
with st.expander("๐ Model Guide & Download Information"):
st.markdown("""
## ๐ Popular Models by Category
### ๐ฏ **General Purpose Champions**
- **Llama-2 Series**: Meta's flagship models (7B, 13B, 70B)
- **Mistral Series**: Excellent efficiency and performance
- **Gemma**: Google's efficient models (2B, 7B)
- **Phi**: Microsoft's compact powerhouses
### ๐ป **Code Specialists**
- **CodeLlama**: Meta's dedicated coding models
- **StarCoder**: BigCode's programming experts
- **WizardCoder**: Enhanced coding capabilities
- **DeepSeek-Coder**: Chinese tech giant's coder
### ๐ฌ **Chat Optimized**
- **Vicuna**: UC Berkeley's ChatGPT alternative
- **Zephyr**: HuggingFace's chat specialist
- **OpenChat**: High-quality conversation models
- **Neural-Chat**: Intel-optimized chat models
### ๐งฎ **Reasoning Masters**
- **WizardMath**: Mathematical problem solving
- **MetaMath**: Advanced arithmetic reasoning
- **Orca-2**: Microsoft's reasoning specialist
- **Goat**: Specialized arithmetic model
### ๐๏ธ **Multimodal Models**
- **LLaVA**: Large Language and Vision Assistant
- **MiniGPT-4**: Multimodal conversational AI
## ๐พ Download Size Reference
| Model Size | FP16 | 8-bit | 4-bit | Use Case |
|------------|------|-------|-------|----------|
| **1-3B** | 2-6GB | 1-3GB | 0.5-1.5GB | Mobile, Edge |
| **7B** | 13GB | 7GB | 3.5GB | Desktop, Laptop |
| **13B** | 26GB | 13GB | 7GB | Workstation |
| **30-34B** | 60GB | 30GB | 15GB | Server, Cloud |
| **70B** | 140GB | 70GB | 35GB | High-end Server |
## ๐ ๏ธ Where to Download
### **Primary Sources**
- **๐ค Hugging Face**: Largest repository with 400,000+ models
- **๐ฆ Ollama**: Simple CLI tool for local deployment
- **๐ฆ LM Studio**: User-friendly GUI for model management
### **Quantized Formats**
- **GGUF**: Best for CPU inference (llama.cpp)
- **GPTQ**: GPU-optimized quantization
- **AWQ**: Advanced weight quantization
### **Download Tips**
- Use `git lfs` for large models from Hugging Face
- Consider bandwidth and storage before downloading
- Start with 4-bit quantized versions for testing
- Use `ollama pull model_name` for easiest setup
## ๐ง Optimization Strategies
### **Memory Reduction**
- **4-bit quantization**: 75% memory reduction
- **8-bit quantization**: 50% memory reduction
- **CPU offloading**: Use system RAM for overflow
### **Speed Optimization**
- **GPU acceleration**: CUDA, ROCm, Metal
- **Batch processing**: Process multiple requests
- **Context caching**: Reuse computations
""")
# Footer with updated resources
st.markdown("---")
st.markdown("""
### ๐ Essential Download & Deployment Tools
**๐ฆ Easy Model Deployment:**
- [**Ollama**](https://ollama.ai/) โ `curl -fsSL https://ollama.ai/install.sh | sh`
- [**LM Studio**](https://lmstudio.ai/) โ Drag-and-drop GUI for running models locally
- [**GPT4All**](https://gpt4all.io/) โ Cross-platform desktop app for local LLMs
**๐ค Model Repositories:**
- [**Hugging Face Hub**](https://huggingface.co/models) โ Filter by model size, task, and license
- [**TheBloke's Quantizations**](https://huggingface.co/TheBloke) โ Pre-quantized models in GGUF/GPTQ format
- [**Awesome LLM**](https://github.com/Hannibal046/Awesome-LLMs) โ Curated list of models and resources
---
""")
with tab2:
run_app2()
with tab3:
st.title("๐ง LLM Training Time & Cost Estimator")
# Load and prepare model list
model_list = get_all_models_from_database(LLM_DATABASE)
dropdown_options = [m["display"] for m in model_list]
# Dropdown menu
selected_display = st.selectbox("Select a Model", dropdown_options)
selected_model = next((m for m in model_list if m["display"] == selected_display), None)
# Convert size to params in billions (very rough approx.)
if "GB" in selected_model["size"]:
size_val = float(selected_model["size"].replace("GB", "").strip())
elif "MB" in selected_model["size"]:
size_val = float(selected_model["size"].replace("MB", "").strip()) / 1024
else:
size_val = 1.0 # default
params = size_val
tokens = st.number_input("Training Tokens (B)", min_value=1.0, value=300.0)
# Select compute method
gpu_choice = st.radio("Choose Compute Source", ["Manual TFLOPs", "A100", "H100", "Exo"])
if gpu_choice == "Manual TFLOPs":
teraflops = st.number_input("TFLOPs/s", min_value=1.0, value=100.0)
cost_per_tflop_hr = st.number_input("โน Cost per TFLOP-Hour", min_value=0.0, value=0.0)
elif gpu_choice == "Exo":
exo_flops = st.number_input("TFLOPs from Exo", min_value=1.0)
teraflops = get_gpu_teraflops("Exo", exo_flops)
cost_per_tflop_hr = st.number_input("โน Cost per TFLOP-Hour (Exo)", min_value=0.0, value=0.0)
else:
teraflops = get_gpu_teraflops(gpu_choice)
cost_str = selected_model.get(f"cost_{gpu_choice.lower()}", "โน0").replace("โน", "").replace(",", "")
cost_per_tflop_hr = float(cost_str) / 100 # rough est: โน per 100 TFLOP-hr
st.info(f"{gpu_choice}: โน{cost_per_tflop_hr:.2f} per TFLOP-Hour")
# Estimate
if st.button("Estimate Time & Cost"):
result = estimate_training_time_and_cost(params, tokens, teraflops, cost_per_tflop_hr)
st.success(f"""
๐ **Model:** {selected_model['name']}
๐ง **Params (est):** {params:.2f}B
๐ข **FLOPs Required:** {result['flops_required']:.2e}
โฑ๏ธ **Time:** {result['time_hours']:.2f} hrs / {result['time_days']:.2f} days
๐ธ **Cost:** โน{result['total_cost']:.2f}
โ๏ธ **Compute Used:** {teraflops} TFLOPs/s
""")
|