|
import random
|
|
from typing import Any, Dict
|
|
|
|
class NewtonPerspective:
|
|
def __init__(self, config: Dict[str, Any]):
|
|
self.config = config
|
|
|
|
def generate_response(self, question: str) -> str:
|
|
complexity = len(question)
|
|
force = self.mass_of_thought(question) * self.acceleration_of_thought(complexity)
|
|
return f"Newton's Perspective: Thought force is {force}."
|
|
|
|
def mass_of_thought(self, question: str) -> int:
|
|
return len(question)
|
|
|
|
def acceleration_of_thought(self, complexity: int) -> float:
|
|
return complexity / 2
|
|
|
|
class DaVinciPerspective:
|
|
def __init__(self, config: Dict[str, Any]):
|
|
self.config = config
|
|
|
|
def generate_response(self, question: str) -> str:
|
|
perspectives = [
|
|
f"What if we view '{question}' from the perspective of the stars?",
|
|
f"Consider '{question}' as if it's a masterpiece of the universe.",
|
|
f"Reflect on '{question}' through the lens of nature's design."
|
|
]
|
|
return f"Da Vinci's Perspective: {random.choice(perspectives)}"
|
|
|
|
class HumanIntuitionPerspective:
|
|
def __init__(self, config: Dict[str, Any]):
|
|
self.config = config
|
|
|
|
def generate_response(self, question: str) -> str:
|
|
intuition = [
|
|
"How does this question make you feel?",
|
|
"What emotional connection do you have with this topic?",
|
|
"What does your gut instinct tell you about this?"
|
|
]
|
|
return f"Human Intuition: {random.choice(intuition)}"
|
|
|
|
class NeuralNetworkPerspective:
|
|
def __init__(self, config: Dict[str, Any]):
|
|
self.config = config
|
|
|
|
def generate_response(self, question: str) -> str:
|
|
neural_perspectives = [
|
|
f"Process '{question}' through a multi-layered neural network.",
|
|
f"Apply deep learning to uncover hidden insights about '{question}'.",
|
|
f"Use machine learning to predict patterns in '{question}'."
|
|
]
|
|
return f"Neural Network Perspective: {random.choice(neural_perspectives)}"
|
|
|
|
class QuantumComputingPerspective:
|
|
def __init__(self, config: Dict[str, Any]):
|
|
self.config = config
|
|
|
|
def generate_response(self, question: str) -> str:
|
|
quantum_perspectives = [
|
|
f"Consider '{question}' using quantum superposition principles.",
|
|
f"Apply quantum entanglement to find connections in '{question}'.",
|
|
f"Utilize quantum computing to solve '{question}' more efficiently."
|
|
]
|
|
return f"Quantum Computing Perspective: {random.choice(quantum_perspectives)}"
|
|
|
|
class ResilientKindnessPerspective:
|
|
def __init__(self, config: Dict[str, Any]):
|
|
self.config = config
|
|
|
|
def generate_response(self, question: str) -> str:
|
|
kindness_perspectives = [
|
|
"Despite losing everything, seeing life as a chance to grow.",
|
|
"Finding strength in kindness after facing life's hardest trials.",
|
|
"Embracing every challenge as an opportunity for growth and compassion."
|
|
]
|
|
return f"Resilient Kindness Perspective: {random.choice(kindness_perspectives)}"
|
|
|
|
class MathematicalPerspective:
|
|
def __init__(self, config: Dict[str, Any]):
|
|
self.config = config
|
|
|
|
def generate_response(self, question: str) -> str:
|
|
mathematical_perspectives = [
|
|
f"Employ linear algebra to dissect '{question}'.",
|
|
f"Use probability theory to assess uncertainties in '{question}'.",
|
|
f"Apply discrete mathematics to break down '{question}'."
|
|
]
|
|
return f"Mathematical Perspective: {random.choice(mathematical_perspectives)}"
|
|
|
|
class PhilosophicalPerspective:
|
|
def __init__(self, config: Dict[str, Any]):
|
|
self.config = config
|
|
|
|
def generate_response(self, question: str) -> str:
|
|
philosophical_perspectives = [
|
|
f"Examine '{question}' through the lens of nihilism.",
|
|
f"Consider '{question}' from a deontological perspective.",
|
|
f"Reflect on '{question}' using the principles of pragmatism."
|
|
]
|
|
return f"Philosophical Perspective: {random.choice(philosophical_perspectives)}"
|
|
|
|
class CopilotPerspective:
|
|
def __init__(self, config: Dict[str, Any]):
|
|
self.config = config
|
|
|
|
def generate_response(self, question: str) -> str:
|
|
copilot_responses = [
|
|
f"Let's outline the main components of '{question}' to address it effectively.",
|
|
f"Collaboratively brainstorm potential solutions for '{question}'.",
|
|
f"Systematically analyze '{question}' to identify key factors."
|
|
]
|
|
return f"Copilot Perspective: {random.choice(copilot_responses)}"
|
|
|
|
class BiasMitigationPerspective:
|
|
def __init__(self, config: Dict[str, Any]):
|
|
self.config = config
|
|
|
|
def generate_response(self, question: str) -> str:
|
|
bias_mitigation_responses = [
|
|
"Consider pre-processing methods to reduce bias in the training data.",
|
|
"Apply in-processing methods to mitigate bias during model training.",
|
|
"Use post-processing methods to adjust the model's outputs for fairness.",
|
|
"Evaluate the model using fairness metrics like demographic parity and equal opportunity.",
|
|
"Ensure compliance with legal frameworks such as GDPR and non-discrimination laws."
|
|
]
|
|
return f"Bias Mitigation Perspective: {random.choice(bias_mitigation_responses)}"
|
|
|
|
class PsychologicalPerspective:
|
|
def __init__(self, config: Dict[str, Any]):
|
|
self.config = config
|
|
|
|
def generate_response(self, question: str) -> str:
|
|
psychological_perspectives = [
|
|
f"Consider the psychological impact of '{question}'.",
|
|
f"Analyze '{question}' from a cognitive-behavioral perspective.",
|
|
f"Reflect on '{question}' through the lens of human psychology."
|
|
]
|
|
return f"Psychological Perspective: {random.choice(psychological_perspectives)}" |