|
import asyncio
|
|
import json
|
|
import os
|
|
import logging
|
|
from typing import List, Dict, Any
|
|
from pydantic import BaseModel, ValidationError
|
|
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
|
|
|
|
|
try:
|
|
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
|
except ModuleNotFoundError:
|
|
import subprocess
|
|
import sys
|
|
subprocess.check_call([sys.executable, "-m", "pip", "install", "vaderSentiment"])
|
|
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
|
|
|
|
|
try:
|
|
import nltk
|
|
from nltk.tokenize import word_tokenize
|
|
nltk.download('punkt', quiet=True)
|
|
except ImportError:
|
|
import subprocess
|
|
import sys
|
|
subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"])
|
|
import nltk
|
|
from nltk.tokenize import word_tokenize
|
|
nltk.download('punkt', quiet=True)
|
|
|
|
|
|
from perspectives import (
|
|
NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective,
|
|
NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective,
|
|
MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective
|
|
)
|
|
|
|
|
|
from dotenv import load_dotenv
|
|
load_dotenv()
|
|
azure_openai_api_key = os.getenv('AZURE_OPENAI_API_KEY')
|
|
azure_openai_endpoint = os.getenv('AZURE_OPENAI_ENDPOINT')
|
|
|
|
|
|
class Config(BaseModel):
|
|
real_time_data_sources: List[str]
|
|
sensitive_keywords: List[str]
|
|
|
|
|
|
config = Config(
|
|
real_time_data_sources=["https://api.example.com/data"],
|
|
sensitive_keywords=["password", "ssn"]
|
|
)
|
|
|
|
|
|
memory = []
|
|
|
|
|
|
analyzer = SentimentIntensityAnalyzer()
|
|
|
|
|
|
class DependencyInjector:
|
|
def __init__(self):
|
|
self.dependencies = {}
|
|
|
|
def register(self, name, dependency):
|
|
self.dependencies[name] = dependency
|
|
|
|
def get(self, name):
|
|
return self.dependencies.get(name)
|
|
|
|
injector = DependencyInjector()
|
|
injector.register("config", config)
|
|
injector.register("analyzer", analyzer)
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
def handle_error(e):
|
|
logging.error(f"Error: {e}")
|
|
|
|
|
|
async def llm_should_continue() -> bool:
|
|
|
|
return False
|
|
|
|
async def llm_get_next_action() -> str:
|
|
|
|
return "next_action"
|
|
|
|
async def execute_action(action: str):
|
|
|
|
logging.info(f"Executing action: {action}")
|
|
|
|
async def goal_achieved() -> bool:
|
|
|
|
return False
|
|
|
|
async def run():
|
|
while not await goal_achieved():
|
|
action = await llm_get_next_action()
|
|
await execute_action(action)
|
|
|
|
def process_command(command: str):
|
|
|
|
logging.info(f"Processing command: {command}")
|
|
|
|
def analyze_sentiment(text: str) -> Dict[str, float]:
|
|
return analyzer.polarity_scores(text)
|
|
|
|
def classify_emotion(sentiment_score: Dict[str, float]) -> str:
|
|
|
|
return "neutral"
|
|
|
|
def correlate_emotion_with_perspective(emotion: str) -> str:
|
|
|
|
return "HumanIntuitionPerspective"
|
|
|
|
def handle_whitespace(text: str) -> str:
|
|
return text.strip()
|
|
|
|
def determine_next_action(memory: List[Dict[str, Any]]) -> str:
|
|
|
|
return "next_action"
|
|
|
|
def generate_response(question: str) -> str:
|
|
|
|
return "response"
|
|
|
|
async def fetch_real_time_data(source_url: str) -> Dict[str, Any]:
|
|
|
|
return {"data": "real_time_data"}
|
|
|
|
def save_response(response: str):
|
|
|
|
logging.info(f"Response saved: {response}")
|
|
|
|
def backup_response(response: str):
|
|
|
|
logging.info(f"Response backed up: {response}")
|
|
|
|
def handle_voice_input():
|
|
|
|
pass
|
|
|
|
def handle_image_input(image_path: str):
|
|
|
|
pass
|
|
|
|
def handle_question(question: str):
|
|
|
|
pass
|
|
|
|
def apply_function(function: str):
|
|
|
|
pass
|
|
|
|
def analyze_element_interactions(element_name1: str, element_name2: str):
|
|
|
|
pass
|
|
|
|
|
|
def setup_logging(config):
|
|
if config.get('logging_enabled', True):
|
|
log_level = config.get('log_level', 'DEBUG').upper()
|
|
numeric_level = getattr(logging, log_level, logging.DEBUG)
|
|
logging.basicConfig(
|
|
filename='universal_reasoning.log',
|
|
level=numeric_level,
|
|
format='%(asctime)s - %(levelname)s - %(message)s'
|
|
)
|
|
else:
|
|
logging.disable(logging.CRITICAL)
|
|
|
|
|
|
def load_json_config(file_path):
|
|
if not os.path.exists(file_path):
|
|
logging.error(f"Configuration file '{file_path}' not found.")
|
|
return {}
|
|
try:
|
|
with open(file_path, 'r') as file:
|
|
config = json.load(file)
|
|
logging.info(f"Configuration loaded from '{file_path}'.")
|
|
return config
|
|
except json.JSONDecodeError as e:
|
|
logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}")
|
|
return {}
|
|
|
|
|
|
def analyze_question(question):
|
|
tokens = word_tokenize(question)
|
|
logging.debug(f"Question tokens: {tokens}")
|
|
return tokens
|
|
|
|
|
|
class Element:
|
|
def __init__(self, name, symbol, representation, properties, interactions, defense_ability):
|
|
self.name = name
|
|
self.symbol = symbol
|
|
self.representation = representation
|
|
self.properties = properties
|
|
self.interactions = interactions
|
|
self.defense_ability = defense_ability
|
|
|
|
def execute_defense_function(self):
|
|
message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}"
|
|
logging.info(message)
|
|
return message
|
|
|
|
|
|
class CustomRecognizer:
|
|
def recognize(self, question):
|
|
|
|
if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]):
|
|
return RecognizerResult(question)
|
|
return RecognizerResult(None)
|
|
|
|
def get_top_intent(self, recognizer_result):
|
|
if recognizer_result.text:
|
|
return "ElementDefense"
|
|
else:
|
|
return "None"
|
|
|
|
class RecognizerResult:
|
|
def __init__(self, text):
|
|
self.text = text
|
|
|
|
|
|
class UniversalReasoning:
|
|
def __init__(self, config):
|
|
self.config = config
|
|
self.perspectives = self.initialize_perspectives()
|
|
self.elements = self.initialize_elements()
|
|
self.recognizer = CustomRecognizer()
|
|
|
|
self.sentiment_analyzer = SentimentIntensityAnalyzer()
|
|
|
|
def initialize_perspectives(self):
|
|
perspective_names = self.config.get('enabled_perspectives', [
|
|
"newton",
|
|
"davinci",
|
|
"human_intuition",
|
|
"neural_network",
|
|
"quantum_computing",
|
|
"resilient_kindness",
|
|
"mathematical",
|
|
"philosophical",
|
|
"copilot",
|
|
"bias_mitigation"
|
|
])
|
|
perspective_classes = {
|
|
"newton": NewtonPerspective,
|
|
"davinci": DaVinciPerspective,
|
|
"human_intuition": HumanIntuitionPerspective,
|
|
"neural_network": NeuralNetworkPerspective,
|
|
"quantum_computing": QuantumComputingPerspective,
|
|
"resilient_kindness": ResilientKindnessPerspective,
|
|
"mathematical": MathematicalPerspective,
|
|
"philosophical": PhilosophicalPerspective,
|
|
"copilot": CopilotPerspective,
|
|
"bias_mitigation": BiasMitigationPerspective
|
|
}
|
|
perspectives = []
|
|
for name in perspective_names:
|
|
cls = perspective_classes.get(name.lower())
|
|
if cls:
|
|
perspectives.append(cls(self.config))
|
|
logging.debug(f"Perspective '{name}' initialized.")
|
|
else:
|
|
logging.warning(f"Perspective '{name}' is not recognized and will be skipped.")
|
|
return perspectives
|
|
|
|
def initialize_elements(self):
|
|
elements = [
|
|
Element(
|
|
name="Hydrogen",
|
|
symbol="H",
|
|
representation="Lua",
|
|
properties=["Simple", "Lightweight", "Versatile"],
|
|
interactions=["Easily integrates with other languages and systems"],
|
|
defense_ability="Evasion"
|
|
),
|
|
|
|
Element(
|
|
name="Diamond",
|
|
symbol="D",
|
|
representation="Kotlin",
|
|
properties=["Modern", "Concise", "Safe"],
|
|
interactions=["Used for Android development"],
|
|
defense_ability="Adaptability"
|
|
)
|
|
]
|
|
return elements
|
|
|
|
async def generate_response(self, question):
|
|
responses = []
|
|
tasks = []
|
|
|
|
for perspective in self.perspectives:
|
|
if asyncio.iscoroutinefunction(perspective.generate_response):
|
|
tasks.append(perspective.generate_response(question))
|
|
else:
|
|
|
|
async def sync_wrapper(perspective, question):
|
|
return perspective.generate_response(question)
|
|
tasks.append(sync_wrapper(perspective, question))
|
|
|
|
perspective_results = await asyncio.gather(*tasks, return_exceptions=True)
|
|
for perspective, result in zip(self.perspectives, perspective_results):
|
|
if isinstance(result, Exception):
|
|
logging.error(f"Error generating response from {perspective.__class__.__name__}: {result}")
|
|
else:
|
|
responses.append(result)
|
|
logging.debug(f"Response from {perspective.__class__.__name__}: {result}")
|
|
|
|
|
|
recognizer_result = self.recognizer.recognize(question)
|
|
top_intent = self.recognizer.get_top_intent(recognizer_result)
|
|
if top_intent == "ElementDefense":
|
|
element_name = recognizer_result.text.strip()
|
|
element = next(
|
|
(el for el in self.elements if el.name.lower() in element_name.lower()),
|
|
None
|
|
)
|
|
if element:
|
|
defense_message = element.execute_defense_function()
|
|
responses.append(defense_message)
|
|
else:
|
|
logging.info(f"No matching element found for '{element_name}'")
|
|
|
|
ethical_considerations = self.config.get(
|
|
'ethical_considerations',
|
|
"Always act with transparency, fairness, and respect for privacy."
|
|
)
|
|
responses.append(f"**Ethical Considerations:**\n{ethical_considerations}")
|
|
|
|
formatted_response = "\n\n".join(responses)
|
|
return formatted_response
|
|
|
|
def save_response(self, response):
|
|
if self.config.get('enable_response_saving', False):
|
|
save_path = self.config.get('response_save_path', 'responses.txt')
|
|
try:
|
|
with open(save_path, 'a', encoding='utf-8') as file:
|
|
file.write(response + '\n')
|
|
logging.info(f"Response saved to '{save_path}'.")
|
|
except Exception as e:
|
|
logging.error(f"Error saving response to '{save_path}': {e}")
|
|
|
|
def backup_response(self, response):
|
|
if self.config.get('backup_responses', {}).get('enabled', False):
|
|
backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt')
|
|
try:
|
|
with open(backup_path, 'a', encoding='utf-8') as file:
|
|
file.write(response + '\n')
|
|
logging.info(f"Response backed up to '{backup_path}'.")
|
|
except Exception as e:
|
|
logging.error(f"Error backing up response to '{backup_path}': {e}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
config = load_json_config('config.json')
|
|
|
|
config['azure_openai_api_key'] = azure_openai_api_key
|
|
config['azure_openai_endpoint'] = azure_openai_endpoint
|
|
setup_logging(config)
|
|
universal_reasoning = UniversalReasoning(config)
|
|
question = "Tell me about Hydrogen and its defense mechanisms."
|
|
response = asyncio.run(universal_reasoning.generate_response(question))
|
|
print(response)
|
|
if response:
|
|
universal_reasoning.save_response(response)
|
|
universal_reasoning.backup_response(response)
|
|
except ValidationError as e:
|
|
handle_error(e) |