google-bert-bert-base-uncased / fullreasoning.py
Raiff1982's picture
Upload 4 files
037fee9 verified
import asyncio
import json
import os
import logging
from typing import List, Dict, Any
from pydantic import BaseModel, ValidationError
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
# Ensure vaderSentiment is installed
try:
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
except ModuleNotFoundError:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "vaderSentiment"])
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
# Ensure nltk is installed and download required data
try:
import nltk
from nltk.tokenize import word_tokenize
nltk.download('punkt', quiet=True)
except ImportError:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"])
import nltk
from nltk.tokenize import word_tokenize
nltk.download('punkt', quiet=True)
# Import perspectives
from perspectives import (
NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective,
NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective,
MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective
)
# Load environment variables
from dotenv import load_dotenv
load_dotenv()
azure_openai_api_key = os.getenv('AZURE_OPENAI_API_KEY')
azure_openai_endpoint = os.getenv('AZURE_OPENAI_ENDPOINT')
# Configuration management using pydantic
class Config(BaseModel):
real_time_data_sources: List[str]
sensitive_keywords: List[str]
# Initialize configuration
config = Config(
real_time_data_sources=["https://api.example.com/data"],
sensitive_keywords=["password", "ssn"]
)
# Memory management
memory = []
# Sentiment analysis
analyzer = SentimentIntensityAnalyzer()
# Dependency injection
class DependencyInjector:
def __init__(self):
self.dependencies = {}
def register(self, name, dependency):
self.dependencies[name] = dependency
def get(self, name):
return self.dependencies.get(name)
injector = DependencyInjector()
injector.register("config", config)
injector.register("analyzer", analyzer)
# Error handling and logging
logging.basicConfig(level=logging.INFO)
def handle_error(e):
logging.error(f"Error: {e}")
# Functions to implement
async def llm_should_continue() -> bool:
# Placeholder logic to determine if the goal is achieved
return False
async def llm_get_next_action() -> str:
# Placeholder logic to get the next action
return "next_action"
async def execute_action(action: str):
# Placeholder logic to execute an action
logging.info(f"Executing action: {action}")
async def goal_achieved() -> bool:
# Placeholder logic to check if the goal is achieved
return False
async def run():
while not await goal_achieved():
action = await llm_get_next_action()
await execute_action(action)
def process_command(command: str):
# Placeholder logic to process a command
logging.info(f"Processing command: {command}")
def analyze_sentiment(text: str) -> Dict[str, float]:
return analyzer.polarity_scores(text)
def classify_emotion(sentiment_score: Dict[str, float]) -> str:
# Placeholder logic to classify emotion based on sentiment scores
return "neutral"
def correlate_emotion_with_perspective(emotion: str) -> str:
# Placeholder logic to correlate emotion with perspectives
return "HumanIntuitionPerspective"
def handle_whitespace(text: str) -> str:
return text.strip()
def determine_next_action(memory: List[Dict[str, Any]]) -> str:
# Placeholder logic to determine the next action based on memory
return "next_action"
def generate_response(question: str) -> str:
# Placeholder logic to generate a response to a question
return "response"
async def fetch_real_time_data(source_url: str) -> Dict[str, Any]:
# Placeholder logic to fetch real-time data
return {"data": "real_time_data"}
def save_response(response: str):
# Placeholder logic to save the generated response
logging.info(f"Response saved: {response}")
def backup_response(response: str):
# Placeholder logic to backup the generated response
logging.info(f"Response backed up: {response}")
def handle_voice_input():
# Placeholder for handling voice input
pass
def handle_image_input(image_path: str):
# Placeholder for handling image input
pass
def handle_question(question: str):
# Placeholder logic to handle a question and apply functions
pass
def apply_function(function: str):
# Placeholder logic to apply a given function
pass
def analyze_element_interactions(element_name1: str, element_name2: str):
# Placeholder logic to analyze interactions between two elements
pass
# Setup Logging
def setup_logging(config):
if config.get('logging_enabled', True):
log_level = config.get('log_level', 'DEBUG').upper()
numeric_level = getattr(logging, log_level, logging.DEBUG)
logging.basicConfig(
filename='universal_reasoning.log',
level=numeric_level,
format='%(asctime)s - %(levelname)s - %(message)s'
)
else:
logging.disable(logging.CRITICAL)
# Load JSON configuration
def load_json_config(file_path):
if not os.path.exists(file_path):
logging.error(f"Configuration file '{file_path}' not found.")
return {}
try:
with open(file_path, 'r') as file:
config = json.load(file)
logging.info(f"Configuration loaded from '{file_path}'.")
return config
except json.JSONDecodeError as e:
logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}")
return {}
# Initialize NLP (basic tokenization)
def analyze_question(question):
tokens = word_tokenize(question)
logging.debug(f"Question tokens: {tokens}")
return tokens
# Define the Element class
class Element:
def __init__(self, name, symbol, representation, properties, interactions, defense_ability):
self.name = name
self.symbol = symbol
self.representation = representation
self.properties = properties
self.interactions = interactions
self.defense_ability = defense_ability
def execute_defense_function(self):
message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}"
logging.info(message)
return message
# Define the CustomRecognizer class
class CustomRecognizer:
def recognize(self, question):
# Simple keyword-based recognizer for demonstration purposes
if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]):
return RecognizerResult(question)
return RecognizerResult(None)
def get_top_intent(self, recognizer_result):
if recognizer_result.text:
return "ElementDefense"
else:
return "None"
class RecognizerResult:
def __init__(self, text):
self.text = text
# Universal Reasoning Aggregator
class UniversalReasoning:
def __init__(self, config):
self.config = config
self.perspectives = self.initialize_perspectives()
self.elements = self.initialize_elements()
self.recognizer = CustomRecognizer()
# Initialize the sentiment analyzer
self.sentiment_analyzer = SentimentIntensityAnalyzer()
def initialize_perspectives(self):
perspective_names = self.config.get('enabled_perspectives', [
"newton",
"davinci",
"human_intuition",
"neural_network",
"quantum_computing",
"resilient_kindness",
"mathematical",
"philosophical",
"copilot",
"bias_mitigation"
])
perspective_classes = {
"newton": NewtonPerspective,
"davinci": DaVinciPerspective,
"human_intuition": HumanIntuitionPerspective,
"neural_network": NeuralNetworkPerspective,
"quantum_computing": QuantumComputingPerspective,
"resilient_kindness": ResilientKindnessPerspective,
"mathematical": MathematicalPerspective,
"philosophical": PhilosophicalPerspective,
"copilot": CopilotPerspective,
"bias_mitigation": BiasMitigationPerspective
}
perspectives = []
for name in perspective_names:
cls = perspective_classes.get(name.lower())
if cls:
perspectives.append(cls(self.config))
logging.debug(f"Perspective '{name}' initialized.")
else:
logging.warning(f"Perspective '{name}' is not recognized and will be skipped.")
return perspectives
def initialize_elements(self):
elements = [
Element(
name="Hydrogen",
symbol="H",
representation="Lua",
properties=["Simple", "Lightweight", "Versatile"],
interactions=["Easily integrates with other languages and systems"],
defense_ability="Evasion"
),
# You can add more elements as needed
Element(
name="Diamond",
symbol="D",
representation="Kotlin",
properties=["Modern", "Concise", "Safe"],
interactions=["Used for Android development"],
defense_ability="Adaptability"
)
]
return elements
async def generate_response(self, question):
responses = []
tasks = []
# Generate responses from perspectives concurrently
for perspective in self.perspectives:
if asyncio.iscoroutinefunction(perspective.generate_response):
tasks.append(perspective.generate_response(question))
else:
# Wrap synchronous functions in coroutine
async def sync_wrapper(perspective, question):
return perspective.generate_response(question)
tasks.append(sync_wrapper(perspective, question))
perspective_results = await asyncio.gather(*tasks, return_exceptions=True)
for perspective, result in zip(self.perspectives, perspective_results):
if isinstance(result, Exception):
logging.error(f"Error generating response from {perspective.__class__.__name__}: {result}")
else:
responses.append(result)
logging.debug(f"Response from {perspective.__class__.__name__}: {result}")
# Handle element defense logic
recognizer_result = self.recognizer.recognize(question)
top_intent = self.recognizer.get_top_intent(recognizer_result)
if top_intent == "ElementDefense":
element_name = recognizer_result.text.strip()
element = next(
(el for el in self.elements if el.name.lower() in element_name.lower()),
None
)
if element:
defense_message = element.execute_defense_function()
responses.append(defense_message)
else:
logging.info(f"No matching element found for '{element_name}'")
ethical_considerations = self.config.get(
'ethical_considerations',
"Always act with transparency, fairness, and respect for privacy."
)
responses.append(f"**Ethical Considerations:**\n{ethical_considerations}")
formatted_response = "\n\n".join(responses)
return formatted_response
def save_response(self, response):
if self.config.get('enable_response_saving', False):
save_path = self.config.get('response_save_path', 'responses.txt')
try:
with open(save_path, 'a', encoding='utf-8') as file:
file.write(response + '\n')
logging.info(f"Response saved to '{save_path}'.")
except Exception as e:
logging.error(f"Error saving response to '{save_path}': {e}")
def backup_response(self, response):
if self.config.get('backup_responses', {}).get('enabled', False):
backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt')
try:
with open(backup_path, 'a', encoding='utf-8') as file:
file.write(response + '\n')
logging.info(f"Response backed up to '{backup_path}'.")
except Exception as e:
logging.error(f"Error backing up response to '{backup_path}': {e}")
# Example usage
if __name__ == "__main__":
try:
config = load_json_config('config.json')
# Add Azure OpenAI configurations to the config
config['azure_openai_api_key'] = azure_openai_api_key
config['azure_openai_endpoint'] = azure_openai_endpoint
setup_logging(config)
universal_reasoning = UniversalReasoning(config)
question = "Tell me about Hydrogen and its defense mechanisms."
response = asyncio.run(universal_reasoning.generate_response(question))
print(response)
if response:
universal_reasoning.save_response(response)
universal_reasoning.backup_response(response)
except ValidationError as e:
handle_error(e)