import gradio as gr import os from io import BytesIO from PIL import Image, ImageDraw, ImageFont from PIL import ImageColor import json from google import genai from google.genai import types # Initialize Google Gemini client client = genai.Client(api_key=os.environ['GOOGLE_API_KEY']) model_name = "gemini-2.0-flash-exp" bounding_box_system_instructions = """ Return bounding boxes as a JSON array with labels. Never return masks or code fencing. Limit to 25 objects. If an object is present multiple times, name them according to their unique characteristic (colors, size, position, unique characteristics, etc..). """ additional_colors = [colorname for (colorname, colorcode) in ImageColor.colormap.items()] def parse_json(json_output): """ Parse JSON output from the Gemini model. """ lines = json_output.splitlines() for i, line in enumerate(lines): if line == "```json": json_output = "\n".join(lines[i+1:]) # Remove everything before "```json" json_output = json_output.split("```")[0] # Remove everything after the closing "```" break return json_output def plot_bounding_boxes(im, bounding_boxes): """ Plots bounding boxes on an image with labels. """ im = im.copy() width, height = im.size draw = ImageDraw.Draw(im) colors = [ 'red', 'green', 'blue', 'yellow', 'orange', 'pink', 'purple', 'cyan', 'lime', 'magenta', 'violet', 'gold', 'silver' ] + additional_colors try: # Use a default font if NotoSansCJK is not available try: font = ImageFont.load_default() except OSError: print("NotoSansCJK-Regular.ttc not found. Using default font.") font = ImageFont.load_default() bounding_boxes_json = json.loads(bounding_boxes) for i, bounding_box in enumerate(bounding_boxes_json): color = colors[i % len(colors)] abs_y1 = int(bounding_box["box_2d"][0] / 1000 * height) abs_x1 = int(bounding_box["box_2d"][1] / 1000 * width) abs_y2 = int(bounding_box["box_2d"][2] / 1000 * height) abs_x2 = int(bounding_box["box_2d"][3] / 1000 * width) if abs_x1 > abs_x2: abs_x1, abs_x2 = abs_x2, abs_x1 if abs_y1 > abs_y2: abs_y1, abs_y2 = abs_y2, abs_y1 # Draw bounding box and label draw.rectangle(((abs_x1, abs_y1), (abs_x2, abs_y2)), outline=color, width=4) if "label" in bounding_box: draw.text((abs_x1 + 8, abs_y1 + 6), bounding_box["label"], fill=color, font=font) except Exception as e: print(f"Error drawing bounding boxes: {e}") return im def predict_bounding_boxes(image, prompt): """ Process the image and prompt through Gemini and draw bounding boxes. """ try: # Resize the image for input image = image.resize((1024, int(1024 * image.height / image.width))) buffered = BytesIO() image.save(buffered, format="JPEG") image_bytes = buffered.getvalue() # Make API request to Gemini response = client.models.generate_content( model=model_name, contents=[prompt, image], config=types.GenerateContentConfig( system_instruction=bounding_box_system_instructions, temperature=0.5, safety_settings=[ types.SafetySetting( category="HARM_CATEGORY_DANGEROUS_CONTENT", threshold="BLOCK_ONLY_HIGH", ) ], ) ) print("Gemini response:", response.text) # Parse and plot bounding boxes bounding_boxes = parse_json(response.text) if not bounding_boxes: raise ValueError("No bounding boxes returned.") result_image = plot_bounding_boxes(image, bounding_boxes) return result_image except Exception as e: print(f"Error during processing: {e}") return image, f"Error: {e}" def gradio_interface(): """ Gradio app interface for bounding box generation with example pairs. """ # Example image + prompt pairs examples = [ ["cookies.jpg", "Detect the cookies and label their types."], ["messed_room.jpg", "Find the unorganized item and suggest action in label in the image to fix them."], ["yoga.jpg", "Show the different yoga poses and name them."], ["zoom_face.png", "Label the tired faces in the image."] ] with gr.Blocks(gr.themes.Glass(secondary_hue= "rose")) as demo: gr.Markdown("# Gemini Bounding Box Generator") with gr.Row(): with gr.Column(): gr.Markdown("### Input Section") input_image = gr.Image(type="pil", label="Input Image") input_prompt = gr.Textbox(lines=2, label="Input Prompt", placeholder="Describe what to detect.") submit_btn = gr.Button("Generate") with gr.Column(): gr.Markdown("### Output Section") output_image = gr.Image(type="pil", label="Output Image") #output_json = gr.Textbox(label="Bounding Boxes JSON") gr.Markdown("### Examples") gr.Examples( examples=examples, inputs=[input_image, input_prompt], label="Example Images with Prompts" ) # Event to generate bounding boxes submit_btn.click( predict_bounding_boxes, inputs=[input_image, input_prompt], outputs=[output_image] ) return demo if __name__ == "__main__": app = gradio_interface() app.launch()