File size: 10,991 Bytes
72671db
 
 
 
 
 
 
 
 
c79cee7
e3981d9
4a36a2e
 
b8d849d
72671db
 
 
 
 
 
 
20b8359
 
72671db
 
 
 
 
 
 
 
20b8359
72671db
 
 
 
 
 
 
 
c79cee7
 
 
e3981d9
4a36a2e
 
72671db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a036c0
72671db
 
 
 
 
1d0a9b2
72671db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ce916
72671db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3981d9
72671db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3981d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22c5bcc
 
20b8359
22c5bcc
 
 
 
 
 
e3981d9
 
 
 
 
 
 
 
 
72671db
20b8359
 
c3072e2
20b8359
 
 
 
72671db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92338ad
72671db
 
 
 
1d0a9b2
92338ad
72671db
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import requests
import json
import gradio as gr
# from concurrent.futures import ThreadPoolExecutor
import pdfplumber
import pandas as pd
import langchain
import time
from cnocr import CnOcr
import pinecone
import openai
from langchain.vectorstores import Pinecone
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter

# from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import UnstructuredWordDocumentLoader
from langchain.document_loaders import UnstructuredPowerPointLoader
# from langchain.document_loaders.image import UnstructuredImageLoader


from langchain.chains.question_answering import load_qa_chain
from langchain import OpenAI

from sentence_transformers import SentenceTransformer, models, util
word_embedding_model = models.Transformer('sentence-transformers/all-MiniLM-L6-v2', do_lower_case=True)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode='cls')
embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
ocr = CnOcr()
# chat_url = 'https://Raghav001-API.hf.space/sale'
chat_url = 'https://Raghav001-API.hf.space/chatpdf'
chat_emd = 'https://Raghav001-API.hf.space/embedd'
headers = {
    'Content-Type': 'application/json',
}
# thread_pool_executor = ThreadPoolExecutor(max_workers=4)
history_max_len = 500
all_max_len = 3000



# Initialize Pinecone client and create an index
pinecone.init(api_key="ffb1f594-0915-4ebf-835f-c1eaa62fdcdc",environment = "us-west4-gcp-free")
index = pinecone.Index(index_name="test")    


def get_emb(text):
    emb_url = 'https://Raghav001-API.hf.space/embeddings'
    data = {"content": text}
    try:
        result = requests.post(url=emb_url,
                               data=json.dumps(data),
                               headers=headers
                               )
        print("--------------------------------Embeddings-----------------------------------")
        print(result.json()['data'][0]['embedding'])
        return result.json()['data'][0]['embedding']
    except Exception as e:
        print('data', data, 'result json', result.json())


def doc_emb(doc: str):
    texts = doc.split('\n')
    # futures = []
    emb_list = embedder.encode(texts)
    print('emb_list',emb_list)
    # for text in texts:
    #     futures.append(thread_pool_executor.submit(get_emb, text))
    # for f in futures:
    #     emb_list.append(f.result())
    print('\n'.join(texts))
    pine(doc)
    gr.Textbox.update(value="")
    return texts, emb_list, gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Markdown.update(
        value="""success ! Let's talk"""), gr.Chatbot.update(visible=True)


def get_response(msg, bot, doc_text_list, doc_embeddings):
    # future = thread_pool_executor.submit(get_emb, msg)
    gr.Textbox.update(value="")
    now_len = len(msg)
    req_json = {'question': msg}
    his_bg = -1
    for i in range(len(bot) - 1, -1, -1):
        if now_len + len(bot[i][0]) + len(bot[i][1]) > history_max_len:
            break
        now_len += len(bot[i][0]) + len(bot[i][1])
        his_bg = i
    req_json['history'] = [] if his_bg == -1 else bot[his_bg:]
    # query_embedding = future.result()
    query_embedding = embedder.encode([msg])
    cos_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
    score_index = [[score, index] for score, index in zip(cos_scores, [i for i in range(len(cos_scores))])]
    score_index.sort(key=lambda x: x[0], reverse=True)
    print('score_index:\n', score_index)
    print('doc_emb_state', doc_emb_state)
    index_set, sub_doc_list = set(), []
    for s_i in score_index:
        doc = doc_text_list[s_i[1]]
        if now_len + len(doc) > all_max_len:
            break
        index_set.add(s_i[1])
        now_len += len(doc)
       # Maybe the paragraph is truncated wrong, so add the upper and lower paragraphs
        if s_i[1] > 0 and s_i[1] -1 not in index_set:
            doc = doc_text_list[s_i[1]-1]
            if now_len + len(doc) > all_max_len:
                break
            index_set.add(s_i[1]-1)
            now_len += len(doc)
        if s_i[1] + 1 < len(doc_text_list) and s_i[1] + 1 not in index_set:
            doc = doc_text_list[s_i[1]+1]
            if now_len + len(doc) > all_max_len:
                break
            index_set.add(s_i[1]+1)
            now_len += len(doc)

    index_list = list(index_set)
    index_list.sort()
    for i in index_list:
        sub_doc_list.append(doc_text_list[i])
    req_json['doc'] = '' if len(sub_doc_list) == 0 else '\n'.join(sub_doc_list)
    data = {"content": json.dumps(req_json)}
    print('data:\n', req_json)
    result = requests.post(url=chat_url,
                           data=json.dumps(data),
                           headers=headers
                           )
    res = result.json()['content']
    bot.append([msg, res])
    return bot[max(0, len(bot) - 3):]


def up_file(fls):
    doc_text_list = []

    
    names = []
    print(names)
    for i in fls:
        names.append(str(i.name))

    
    pdf = []
    docs = []
    pptx = []

    for i in names:
        
        if i[-3:] == "pdf":
            pdf.append(i)
        elif i[-4:] == "docx":
            docs.append(i)
        else:
            pptx.append(i)


    #Pdf Extracting
    for idx, file in enumerate(pdf):
        print("11111")
        #print(file.name)
        with pdfplumber.open(file) as pdf:
            for i in range(len(pdf.pages)):
                # Read page i+1 of a PDF document
                page = pdf.pages[i]
                res_list = page.extract_text().split('\n')[:-1]

                for j in range(len(page.images)):
                   # Get the binary stream of the image
                    img = page.images[j]
                    file_name = '{}-{}-{}.png'.format(str(time.time()), str(i), str(j))
                    with open(file_name, mode='wb') as f:
                        f.write(img['stream'].get_data())
                    try:
                        res = ocr.ocr(file_name)
                        # res = PyPDFLoader(file_name)
                    except Exception as e:
                        res = []
                    if len(res) > 0:
                        res_list.append(' '.join([re['text'] for re in res]))

                tables = page.extract_tables()
                for table in tables:
                    # The first column is used as the header
                    df = pd.DataFrame(table[1:], columns=table[0])
                    try:
                        records = json.loads(df.to_json(orient="records", force_ascii=False))
                        for rec in records:
                            res_list.append(json.dumps(rec, ensure_ascii=False))
                    except Exception as e:
                        res_list.append(str(df))

                doc_text_list += res_list

        #pptx Extracting
    for i in pptx:
        loader = UnstructuredPowerPointLoader(i)
        data = loader.load()
        # content = str(data).split("'")
        # cnt = content[1]
        # # c = cnt.split('\\n\\n')
        # # final = "".join(c)
        # c = cnt.replace('\\n\\n',"").replace("<PAGE BREAK>","").replace("\t","")
        doc_text_list.append(data)

    

    #Doc Extracting
    for i in docs:
        loader = UnstructuredWordDocumentLoader(i)
        data = loader.load()
        # content = str(data).split("'")
        # cnt = content[1]
        # # c = cnt.split('\\n\\n')
        # # final = "".join(c)
        # c = cnt.replace('\\n\\n',"").replace("<PAGE BREAK>","").replace("\t","")
        doc_text_list.append(data)

    # #Image Extraction
    # for i in jpg:
    #     loader = UnstructuredImageLoader(i)
    #     data = loader.load()
    #     # content = str(data).split("'")
    #     # cnt = content[1]
    #     # # c = cnt.split('\\n\\n')
    #     # # final = "".join(c)
    #     # c = cnt.replace('\\n\\n',"").replace("<PAGE BREAK>","").replace("\t","")
    #     doc_text_list.append(data)
                
    doc_text_list = [str(text).strip() for text in doc_text_list if len(str(text).strip()) > 0]
    # print(doc_text_list)
    return gr.Textbox.update(value='\n'.join(doc_text_list), visible=True), gr.Button.update(
        visible=True), gr.Markdown.update(
        value="Processing")


def pine(data):
    char_text_spliter = CharacterTextSplitter(chunk_size = 1000, chunk_overlap=0)
    # doc_text = char_text_spliter.split_documents(data)
    doc_spilt = []
    data = data.split(" ")
    # print(len(data))
    
    c = 0
    check = 0
    for i in data:
      # print(i)
      if c == 350:
        text = " ".join(data[check: check + c])
        print(text)
        print(check)
        doc_spilt.append(text)
        check = check + c
        c = 0
      else:
        c = c+1


    Embedding_model = "text-embedding-ada-002"
    embeddings = OpenAIEmbeddings(openai_api_key="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")

    print(requests.post(url = chat_emd))

    # embeddings = requests.post(url=chat_emd,
    #                        data=json.dumps(data),
    #                        headers=headers
    #                        )

    pinecone.init(api_key = "ffb1f594-0915-4ebf-835f-c1eaa62fdcdc",
              environment = "us-west4-gcp-free"
              )

    index_name = "test"
    docstore = Pinecone.from_texts([d for d in doc_spilt],embeddings,index_name = index_name,namespace='a1')

    return ''

def get_answer(query_live):
    
    llm = OpenAI(temperature=0, openai='aaa')
    qa_chain = load_qa_chain(llm,chain_type='stuff')
    query = query_live
    docs = docstore.similarity_search(query)
    qa_chain.run(input_documents = docs, question = query)

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            file = gr.File(file_types=['.pptx','.docx','.pdf'], label='Click to upload Document', file_count='multiple')
            doc_bu = gr.Button(value='Submit', visible=False)

            
            txt = gr.Textbox(label='result', visible=False)
            
            
            doc_text_state = gr.State([])
            doc_emb_state = gr.State([])
            
        with gr.Column():
            md = gr.Markdown("Please Upload the PDF")
            chat_bot = gr.Chatbot(visible=False)
            msg_txt = gr.Textbox(visible = False)
            chat_bu = gr.Button(value='Clear', visible=False)

    file.change(up_file, [file], [txt, doc_bu, md]) #hiding the text
    doc_bu.click(doc_emb, [txt], [doc_text_state, doc_emb_state, msg_txt, chat_bu, md, chat_bot])
    msg_txt.submit(get_response, [msg_txt, chat_bot,doc_text_state, doc_emb_state], [chat_bot],queue=False)
    chat_bu.click(lambda: None, None, chat_bot, queue=False)

if __name__ == "__main__":
    demo.queue().launch(show_api=False)
    # demo.queue().launch(share=False, server_name='172.22.2.54', server_port=9191)