Spaces:
Runtime error
Runtime error
added deep cleanup
Browse files
app.py
CHANGED
|
@@ -8,6 +8,13 @@ from diffusers import (
|
|
| 8 |
LuminaText2ImgPipeline
|
| 9 |
)
|
| 10 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Constants
|
| 13 |
MAX_SEED = np.iinfo(np.int32).max
|
|
@@ -47,18 +54,85 @@ MODEL_CONFIGS = {
|
|
| 47 |
}
|
| 48 |
}
|
| 49 |
|
| 50 |
-
#
|
| 51 |
pipes = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
def load_pipeline(model_name):
|
|
|
|
|
|
|
| 54 |
config = MODEL_CONFIGS[model_name]
|
|
|
|
| 55 |
pipe = config["pipeline_class"].from_pretrained(
|
| 56 |
config["repo_id"],
|
| 57 |
torch_dtype=TORCH_DTYPE
|
| 58 |
)
|
| 59 |
pipe = pipe.to(DEVICE)
|
|
|
|
| 60 |
if hasattr(pipe, 'enable_model_cpu_offload'):
|
| 61 |
pipe.enable_model_cpu_offload()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
return pipe
|
| 63 |
|
| 64 |
@spaces.GPU(duration=180)
|
|
@@ -74,33 +148,48 @@ def generate_image(
|
|
| 74 |
num_inference_steps=40,
|
| 75 |
progress=gr.Progress(track_tqdm=True)
|
| 76 |
):
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
# Gradio Interface
|
| 106 |
css = """
|
|
@@ -173,6 +262,9 @@ with gr.Blocks(css=css) as demo:
|
|
| 173 |
value=40,
|
| 174 |
)
|
| 175 |
|
|
|
|
|
|
|
|
|
|
| 176 |
# Create tabs for each model
|
| 177 |
with gr.Tabs() as tabs:
|
| 178 |
results = {}
|
|
@@ -188,6 +280,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 188 |
]
|
| 189 |
gr.Examples(examples=examples, inputs=[prompt])
|
| 190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
# Handle generation for each model
|
| 192 |
def generate_all(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress()):
|
| 193 |
outputs = []
|
|
@@ -199,9 +299,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 199 |
num_inference_steps, progress
|
| 200 |
)
|
| 201 |
outputs.extend([image, used_seed])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
except Exception as e:
|
| 203 |
outputs.extend([None, None])
|
| 204 |
print(f"Error generating with {model_name}: {str(e)}")
|
|
|
|
| 205 |
return outputs
|
| 206 |
|
| 207 |
# Set up the generation trigger
|
|
|
|
| 8 |
LuminaText2ImgPipeline
|
| 9 |
)
|
| 10 |
import spaces
|
| 11 |
+
import gc
|
| 12 |
+
import os
|
| 13 |
+
import psutil
|
| 14 |
+
import threading
|
| 15 |
+
from pathlib import Path
|
| 16 |
+
import shutil
|
| 17 |
+
import time
|
| 18 |
|
| 19 |
# Constants
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 54 |
}
|
| 55 |
}
|
| 56 |
|
| 57 |
+
# Dictionary to store model pipelines
|
| 58 |
pipes = {}
|
| 59 |
+
model_locks = {model_name: threading.Lock() for model_name in MODEL_CONFIGS.keys()}
|
| 60 |
+
|
| 61 |
+
def get_process_memory():
|
| 62 |
+
"""Get memory usage of current process in GB"""
|
| 63 |
+
process = psutil.Process(os.getpid())
|
| 64 |
+
return process.memory_info().rss / 1024 / 1024 / 1024
|
| 65 |
+
|
| 66 |
+
def clear_torch_cache():
|
| 67 |
+
"""Clear PyTorch's CUDA cache"""
|
| 68 |
+
if torch.cuda.is_available():
|
| 69 |
+
torch.cuda.empty_cache()
|
| 70 |
+
torch.cuda.ipc_collect()
|
| 71 |
+
|
| 72 |
+
def remove_cache_dir(model_name):
|
| 73 |
+
"""Remove the model's cache directory"""
|
| 74 |
+
cache_dir = Path.home() / '.cache' / 'huggingface' / 'diffusers' / MODEL_CONFIGS[model_name]['repo_id'].replace('/', '--')
|
| 75 |
+
if cache_dir.exists():
|
| 76 |
+
shutil.rmtree(cache_dir, ignore_errors=True)
|
| 77 |
+
|
| 78 |
+
def deep_cleanup(model_name, pipe):
|
| 79 |
+
"""Perform deep cleanup of model resources"""
|
| 80 |
+
try:
|
| 81 |
+
# 1. Move model to CPU first (helps prevent CUDA memory fragmentation)
|
| 82 |
+
if hasattr(pipe, 'to'):
|
| 83 |
+
pipe.to('cpu')
|
| 84 |
+
|
| 85 |
+
# 2. Delete all model components explicitly
|
| 86 |
+
for attr_name in list(pipe.__dict__.keys()):
|
| 87 |
+
if hasattr(pipe, attr_name):
|
| 88 |
+
delattr(pipe, attr_name)
|
| 89 |
+
|
| 90 |
+
# 3. Remove from pipes dictionary
|
| 91 |
+
if model_name in pipes:
|
| 92 |
+
del pipes[model_name]
|
| 93 |
+
|
| 94 |
+
# 4. Clear CUDA cache
|
| 95 |
+
clear_torch_cache()
|
| 96 |
+
|
| 97 |
+
# 5. Run garbage collection multiple times
|
| 98 |
+
for _ in range(3):
|
| 99 |
+
gc.collect()
|
| 100 |
+
|
| 101 |
+
# 6. Remove cached files
|
| 102 |
+
remove_cache_dir(model_name)
|
| 103 |
+
|
| 104 |
+
# 7. Additional CUDA cleanup if available
|
| 105 |
+
if torch.cuda.is_available():
|
| 106 |
+
torch.cuda.synchronize()
|
| 107 |
+
|
| 108 |
+
# 8. Wait a small amount of time to ensure cleanup
|
| 109 |
+
time.sleep(1)
|
| 110 |
+
|
| 111 |
+
except Exception as e:
|
| 112 |
+
print(f"Error during cleanup of {model_name}: {str(e)}")
|
| 113 |
+
|
| 114 |
+
finally:
|
| 115 |
+
# Final garbage collection
|
| 116 |
+
gc.collect()
|
| 117 |
+
clear_torch_cache()
|
| 118 |
|
| 119 |
def load_pipeline(model_name):
|
| 120 |
+
"""Load model pipeline with memory tracking"""
|
| 121 |
+
initial_memory = get_process_memory()
|
| 122 |
config = MODEL_CONFIGS[model_name]
|
| 123 |
+
|
| 124 |
pipe = config["pipeline_class"].from_pretrained(
|
| 125 |
config["repo_id"],
|
| 126 |
torch_dtype=TORCH_DTYPE
|
| 127 |
)
|
| 128 |
pipe = pipe.to(DEVICE)
|
| 129 |
+
|
| 130 |
if hasattr(pipe, 'enable_model_cpu_offload'):
|
| 131 |
pipe.enable_model_cpu_offload()
|
| 132 |
+
|
| 133 |
+
final_memory = get_process_memory()
|
| 134 |
+
print(f"Memory used by {model_name}: {final_memory - initial_memory:.2f} GB")
|
| 135 |
+
|
| 136 |
return pipe
|
| 137 |
|
| 138 |
@spaces.GPU(duration=180)
|
|
|
|
| 148 |
num_inference_steps=40,
|
| 149 |
progress=gr.Progress(track_tqdm=True)
|
| 150 |
):
|
| 151 |
+
with model_locks[model_name]:
|
| 152 |
+
try:
|
| 153 |
+
progress(0, desc=f"Loading {model_name} model...")
|
| 154 |
+
|
| 155 |
+
# Load model if not already loaded
|
| 156 |
+
if model_name not in pipes:
|
| 157 |
+
pipes[model_name] = load_pipeline(model_name)
|
| 158 |
+
|
| 159 |
+
pipe = pipes[model_name]
|
| 160 |
+
|
| 161 |
+
if randomize_seed:
|
| 162 |
+
seed = random.randint(0, MAX_SEED)
|
| 163 |
+
|
| 164 |
+
generator = torch.Generator(DEVICE).manual_seed(seed)
|
| 165 |
+
|
| 166 |
+
progress(0.3, desc=f"Generating image with {model_name}...")
|
| 167 |
+
|
| 168 |
+
# Generate image
|
| 169 |
+
image = pipe(
|
| 170 |
+
prompt=prompt,
|
| 171 |
+
negative_prompt=negative_prompt,
|
| 172 |
+
guidance_scale=guidance_scale,
|
| 173 |
+
num_inference_steps=num_inference_steps,
|
| 174 |
+
width=width,
|
| 175 |
+
height=height,
|
| 176 |
+
generator=generator,
|
| 177 |
+
).images[0]
|
| 178 |
+
|
| 179 |
+
progress(0.9, desc=f"Cleaning up {model_name} resources...")
|
| 180 |
+
|
| 181 |
+
# Cleanup after generation
|
| 182 |
+
deep_cleanup(model_name, pipe)
|
| 183 |
+
|
| 184 |
+
progress(1.0, desc=f"Generation complete with {model_name}")
|
| 185 |
+
return image, seed
|
| 186 |
+
|
| 187 |
+
except Exception as e:
|
| 188 |
+
print(f"Error with {model_name}: {str(e)}")
|
| 189 |
+
# Ensure cleanup happens even if generation fails
|
| 190 |
+
if model_name in pipes:
|
| 191 |
+
deep_cleanup(model_name, pipes[model_name])
|
| 192 |
+
raise e
|
| 193 |
|
| 194 |
# Gradio Interface
|
| 195 |
css = """
|
|
|
|
| 262 |
value=40,
|
| 263 |
)
|
| 264 |
|
| 265 |
+
# Memory usage indicator
|
| 266 |
+
memory_indicator = gr.Markdown("Current memory usage: 0 GB")
|
| 267 |
+
|
| 268 |
# Create tabs for each model
|
| 269 |
with gr.Tabs() as tabs:
|
| 270 |
results = {}
|
|
|
|
| 280 |
]
|
| 281 |
gr.Examples(examples=examples, inputs=[prompt])
|
| 282 |
|
| 283 |
+
def update_memory_usage():
|
| 284 |
+
"""Update memory usage display"""
|
| 285 |
+
memory_gb = get_process_memory()
|
| 286 |
+
if torch.cuda.is_available():
|
| 287 |
+
cuda_memory_gb = torch.cuda.memory_allocated() / 1024 / 1024 / 1024
|
| 288 |
+
return f"Current memory usage: System RAM: {memory_gb:.2f} GB, CUDA: {cuda_memory_gb:.2f} GB"
|
| 289 |
+
return f"Current memory usage: System RAM: {memory_gb:.2f} GB"
|
| 290 |
+
|
| 291 |
# Handle generation for each model
|
| 292 |
def generate_all(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress()):
|
| 293 |
outputs = []
|
|
|
|
| 299 |
num_inference_steps, progress
|
| 300 |
)
|
| 301 |
outputs.extend([image, used_seed])
|
| 302 |
+
|
| 303 |
+
# Update memory usage after each model
|
| 304 |
+
memory_indicator.update(update_memory_usage())
|
| 305 |
+
|
| 306 |
except Exception as e:
|
| 307 |
outputs.extend([None, None])
|
| 308 |
print(f"Error generating with {model_name}: {str(e)}")
|
| 309 |
+
|
| 310 |
return outputs
|
| 311 |
|
| 312 |
# Set up the generation trigger
|