Spaces:
Runtime error
Runtime error
new flow
Browse files
app.py
CHANGED
|
@@ -15,12 +15,17 @@ import threading
|
|
| 15 |
from pathlib import Path
|
| 16 |
import shutil
|
| 17 |
import time
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Constants
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
MAX_IMAGE_SIZE = 1024
|
| 22 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
TORCH_DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# Model configurations
|
| 26 |
MODEL_CONFIGS = {
|
|
@@ -135,7 +140,30 @@ def load_pipeline(model_name):
|
|
| 135 |
|
| 136 |
return pipe
|
| 137 |
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
def generate_image(
|
| 140 |
model_name,
|
| 141 |
prompt,
|
|
@@ -152,7 +180,6 @@ def generate_image(
|
|
| 152 |
try:
|
| 153 |
progress(0, desc=f"Loading {model_name} model...")
|
| 154 |
|
| 155 |
-
# Load model if not already loaded
|
| 156 |
if model_name not in pipes:
|
| 157 |
pipes[model_name] = load_pipeline(model_name)
|
| 158 |
|
|
@@ -165,7 +192,6 @@ def generate_image(
|
|
| 165 |
print(f"Generating image with {model_name}...")
|
| 166 |
progress(0.3, desc=f"Generating image with {model_name}...")
|
| 167 |
|
| 168 |
-
# Generate image
|
| 169 |
image = pipe(
|
| 170 |
prompt=prompt,
|
| 171 |
negative_prompt=negative_prompt,
|
|
@@ -176,9 +202,10 @@ def generate_image(
|
|
| 176 |
generator=generator,
|
| 177 |
).images[0]
|
| 178 |
|
| 179 |
-
|
|
|
|
| 180 |
|
| 181 |
-
|
| 182 |
deep_cleanup(model_name, pipe)
|
| 183 |
|
| 184 |
progress(1.0, desc=f"Generation complete with {model_name}")
|
|
@@ -186,7 +213,6 @@ def generate_image(
|
|
| 186 |
|
| 187 |
except Exception as e:
|
| 188 |
print(f"Error with {model_name}: {str(e)}")
|
| 189 |
-
# Ensure cleanup happens even if generation fails
|
| 190 |
if model_name in pipes:
|
| 191 |
deep_cleanup(model_name, pipes[model_name])
|
| 192 |
raise e
|
|
@@ -198,7 +224,6 @@ css = """
|
|
| 198 |
max-width: 1024px;
|
| 199 |
}
|
| 200 |
"""
|
| 201 |
-
#run_test_safe.zerogpu = True
|
| 202 |
|
| 203 |
with gr.Blocks(css=css) as demo:
|
| 204 |
with gr.Column(elem_id="col-container"):
|
|
@@ -263,17 +288,28 @@ with gr.Blocks(css=css) as demo:
|
|
| 263 |
value=40,
|
| 264 |
)
|
| 265 |
|
| 266 |
-
# Memory usage indicator
|
| 267 |
memory_indicator = gr.Markdown("Current memory usage: 0 GB")
|
| 268 |
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
examples = [
|
| 279 |
"A capybara wearing a suit holding a sign that reads Hello World",
|
|
@@ -281,15 +317,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 281 |
]
|
| 282 |
gr.Examples(examples=examples, inputs=[prompt])
|
| 283 |
|
| 284 |
-
def
|
| 285 |
-
"""Update
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
|
| 292 |
-
# Handle generation for each model
|
| 293 |
@spaces.GPU(duration=600)
|
| 294 |
def generate_all(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress()):
|
| 295 |
outputs = []
|
|
@@ -304,16 +339,16 @@ with gr.Blocks(css=css) as demo:
|
|
| 304 |
print(f"IMAGE GENERATED {model_name} {update_memory_usage()}")
|
| 305 |
outputs.extend([image, used_seed])
|
| 306 |
|
| 307 |
-
# Update memory usage after each model
|
| 308 |
-
#memory_indicator.update(update_memory_usage())
|
| 309 |
-
|
| 310 |
except Exception as e:
|
| 311 |
outputs.extend([None, None])
|
| 312 |
print(f"Error generating with {model_name}: {str(e)}")
|
| 313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
return outputs
|
| 315 |
|
| 316 |
-
# Set up the generation trigger
|
| 317 |
output_components = []
|
| 318 |
for model_name in MODEL_CONFIGS.keys():
|
| 319 |
output_components.extend([results[model_name], seeds[model_name]])
|
|
@@ -333,5 +368,17 @@ with gr.Blocks(css=css) as demo:
|
|
| 333 |
outputs=output_components,
|
| 334 |
)
|
| 335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
if __name__ == "__main__":
|
| 337 |
demo.launch()
|
|
|
|
| 15 |
from pathlib import Path
|
| 16 |
import shutil
|
| 17 |
import time
|
| 18 |
+
import glob
|
| 19 |
+
from datetime import datetime
|
| 20 |
+
from PIL import Image
|
| 21 |
|
| 22 |
# Constants
|
| 23 |
MAX_SEED = np.iinfo(np.int32).max
|
| 24 |
MAX_IMAGE_SIZE = 1024
|
| 25 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 26 |
TORCH_DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 27 |
+
OUTPUT_DIR = "generated_images"
|
| 28 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 29 |
|
| 30 |
# Model configurations
|
| 31 |
MODEL_CONFIGS = {
|
|
|
|
| 140 |
|
| 141 |
return pipe
|
| 142 |
|
| 143 |
+
def save_generated_image(image, model_name, prompt):
|
| 144 |
+
"""Save generated image with timestamp and model name"""
|
| 145 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 146 |
+
# Create sanitized filename from prompt (first 30 chars)
|
| 147 |
+
prompt_part = "".join(c for c in prompt[:30] if c.isalnum() or c in (' ', '-', '_')).strip()
|
| 148 |
+
filename = f"{timestamp}_{model_name}_{prompt_part}.png"
|
| 149 |
+
filepath = os.path.join(OUTPUT_DIR, filename)
|
| 150 |
+
image.save(filepath)
|
| 151 |
+
return filepath
|
| 152 |
+
|
| 153 |
+
def get_generated_images():
|
| 154 |
+
"""Get list of generated images with their details"""
|
| 155 |
+
files = glob.glob(os.path.join(OUTPUT_DIR, "*.png"))
|
| 156 |
+
files.sort(key=os.path.getctime, reverse=True) # Sort by creation time
|
| 157 |
+
return [
|
| 158 |
+
{
|
| 159 |
+
"path": f,
|
| 160 |
+
"name": os.path.basename(f),
|
| 161 |
+
"date": datetime.fromtimestamp(os.path.getctime(f)).strftime("%Y-%m-%d %H:%M:%S"),
|
| 162 |
+
"size": f"{os.path.getsize(f) / 1024:.1f} KB"
|
| 163 |
+
}
|
| 164 |
+
for f in files
|
| 165 |
+
]
|
| 166 |
+
|
| 167 |
def generate_image(
|
| 168 |
model_name,
|
| 169 |
prompt,
|
|
|
|
| 180 |
try:
|
| 181 |
progress(0, desc=f"Loading {model_name} model...")
|
| 182 |
|
|
|
|
| 183 |
if model_name not in pipes:
|
| 184 |
pipes[model_name] = load_pipeline(model_name)
|
| 185 |
|
|
|
|
| 192 |
print(f"Generating image with {model_name}...")
|
| 193 |
progress(0.3, desc=f"Generating image with {model_name}...")
|
| 194 |
|
|
|
|
| 195 |
image = pipe(
|
| 196 |
prompt=prompt,
|
| 197 |
negative_prompt=negative_prompt,
|
|
|
|
| 202 |
generator=generator,
|
| 203 |
).images[0]
|
| 204 |
|
| 205 |
+
filepath = save_generated_image(image, model_name, prompt)
|
| 206 |
+
print(f"Saved image to: {filepath}")
|
| 207 |
|
| 208 |
+
progress(0.9, desc=f"Cleaning up {model_name} resources...")
|
| 209 |
deep_cleanup(model_name, pipe)
|
| 210 |
|
| 211 |
progress(1.0, desc=f"Generation complete with {model_name}")
|
|
|
|
| 213 |
|
| 214 |
except Exception as e:
|
| 215 |
print(f"Error with {model_name}: {str(e)}")
|
|
|
|
| 216 |
if model_name in pipes:
|
| 217 |
deep_cleanup(model_name, pipes[model_name])
|
| 218 |
raise e
|
|
|
|
| 224 |
max-width: 1024px;
|
| 225 |
}
|
| 226 |
"""
|
|
|
|
| 227 |
|
| 228 |
with gr.Blocks(css=css) as demo:
|
| 229 |
with gr.Column(elem_id="col-container"):
|
|
|
|
| 288 |
value=40,
|
| 289 |
)
|
| 290 |
|
|
|
|
| 291 |
memory_indicator = gr.Markdown("Current memory usage: 0 GB")
|
| 292 |
|
| 293 |
+
with gr.Row():
|
| 294 |
+
with gr.Column(scale=2):
|
| 295 |
+
with gr.Tabs() as tabs:
|
| 296 |
+
results = {}
|
| 297 |
+
seeds = {}
|
| 298 |
+
for model_name in MODEL_CONFIGS.keys():
|
| 299 |
+
with gr.Tab(model_name):
|
| 300 |
+
results[model_name] = gr.Image(label=f"{model_name} Result")
|
| 301 |
+
seeds[model_name] = gr.Number(label="Seed used", visible=False)
|
| 302 |
+
|
| 303 |
+
with gr.Column(scale=1):
|
| 304 |
+
gr.Markdown("### Generated Images")
|
| 305 |
+
file_gallery = gr.Gallery(
|
| 306 |
+
label="Generated Images",
|
| 307 |
+
show_label=False,
|
| 308 |
+
elem_id="file_gallery",
|
| 309 |
+
columns=2,
|
| 310 |
+
height=400
|
| 311 |
+
)
|
| 312 |
+
refresh_button = gr.Button("Refresh Gallery")
|
| 313 |
|
| 314 |
examples = [
|
| 315 |
"A capybara wearing a suit holding a sign that reads Hello World",
|
|
|
|
| 317 |
]
|
| 318 |
gr.Examples(examples=examples, inputs=[prompt])
|
| 319 |
|
| 320 |
+
def update_gallery():
|
| 321 |
+
"""Update the file gallery"""
|
| 322 |
+
files = get_generated_images()
|
| 323 |
+
return [
|
| 324 |
+
(f["path"], f"{f['name']}\n{f['date']}")
|
| 325 |
+
for f in files
|
| 326 |
+
]
|
| 327 |
|
|
|
|
| 328 |
@spaces.GPU(duration=600)
|
| 329 |
def generate_all(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress()):
|
| 330 |
outputs = []
|
|
|
|
| 339 |
print(f"IMAGE GENERATED {model_name} {update_memory_usage()}")
|
| 340 |
outputs.extend([image, used_seed])
|
| 341 |
|
|
|
|
|
|
|
|
|
|
| 342 |
except Exception as e:
|
| 343 |
outputs.extend([None, None])
|
| 344 |
print(f"Error generating with {model_name}: {str(e)}")
|
| 345 |
|
| 346 |
+
# Update the gallery after generation
|
| 347 |
+
gallery_images = update_gallery()
|
| 348 |
+
file_gallery.update(value=gallery_images)
|
| 349 |
+
|
| 350 |
return outputs
|
| 351 |
|
|
|
|
| 352 |
output_components = []
|
| 353 |
for model_name in MODEL_CONFIGS.keys():
|
| 354 |
output_components.extend([results[model_name], seeds[model_name]])
|
|
|
|
| 368 |
outputs=output_components,
|
| 369 |
)
|
| 370 |
|
| 371 |
+
refresh_button.click(
|
| 372 |
+
fn=update_gallery,
|
| 373 |
+
inputs=[],
|
| 374 |
+
outputs=[file_gallery],
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
demo.load(
|
| 378 |
+
fn=update_gallery,
|
| 379 |
+
inputs=[],
|
| 380 |
+
outputs=[file_gallery],
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
if __name__ == "__main__":
|
| 384 |
demo.launch()
|