f1llama / app.py
Rafii's picture
refactor: simplify model initialization and remove caching
60e1b89
raw
history blame
3.2 kB
import streamlit as st
from mlx_lm import load, generate
from huggingface_hub import login
import os
from langchain.memory import ConversationBufferMemory
# @st.cache_resource
# def init_model():
# token = os.getenv("HF_TOKEN")
# if token:
# login(token=token)
# return load("Rafii/f1llama")
# return load("mlx-community/Mixtral-8x7B-Instruct-v0.1")
token = os.getenv("HF_TOKEN")
model, tokenizer = load("Rafii/f1llama")
if "memory" not in st.session_state:
st.session_state.memory = ConversationBufferMemory(return_messages=True)
def format_chat_history(messages):
formatted = ""
for msg in messages:
if "input" in msg:
formatted += f"Human: {msg['input']}\n"
if "output" in msg:
formatted += f"Assistant: {msg['output']}\n"
return formatted
def generate_response(user_input, max_tokens=100):
try:
# Get chat history
chat_history = st.session_state.memory.load_memory_variables({})
history = chat_history.get("history", "")
# Create contextual prompt
context = format_chat_history(history)
full_prompt = f"""Previous conversation:
{context}
Human: {user_input}
Assistant:"""
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": full_prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
else:
prompt = full_prompt
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True
)
return response
except Exception as e:
st.error(f"Error generating response: {str(e)}")
return "Sorry, I encountered an error."
st.title("F1 Chatbot 🏎️")
user_input = st.text_input("Ask me anything:", key="user_input")
# Add debug prints and modified display logic
if st.button("Send", key="send"):
if user_input:
with st.spinner("Thinking..."):
response = generate_response(user_input)
# Debug print
st.write(f"Debug - Response: {response}")
st.session_state.memory.save_context(
{"input": user_input},
{"output": response}
)
# Debug print
st.write("Debug - Context saved")
# Modified display section
if "memory" in st.session_state:
st.write("### Conversation")
try:
chat_history = st.session_state.memory.load_memory_variables({})
st.write(f"Debug - Full history: {chat_history}") # Debug print
if "history" in chat_history:
for msg in chat_history["history"]:
st.write(f"Debug - Message: {msg}") # Debug print
if isinstance(msg, dict):
if "input" in msg:
st.info(f"You: {msg['input']}")
if "output" in msg:
st.success(f"Assistant: {msg['output']}")
except Exception as e:
st.error(f"Error displaying conversation: {str(e)}")