File size: 7,029 Bytes
8b5ff86 d53a94b 8b5ff86 d53a94b fb12c2d d53a94b 8b5ff86 fb12c2d 8b5ff86 fb12c2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from datasets import load_dataset
import folium
from streamlit_folium import st_folium
import requests
# Function to fetch location name using OpenStreetMap Nominatim API
def get_location_name(lat, lon):
try:
url = f"https://nominatim.openstreetmap.org/reverse?format=json&lat={lat}&lon={lon}&zoom=10&addressdetails=1"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("display_name", "Unknown Location")
else:
return "Error: Unable to fetch location"
except Exception as e:
return f"Error: {str(e)}"
# Hugging Face Datasets
@st.cache_data
def load_data():
network_insights = load_dataset("infinite-dataset-hub/5GNetworkOptimization", split="train")
return network_insights.to_pandas()
# Load Datasets
network_insights = load_data()
# Title
st.title("Smart Network Infrastructure Planner")
st.sidebar.header("Input Parameters")
# User Inputs from Sidebar
budget = st.sidebar.number_input("Total Budget (in $1000s):", min_value=10, max_value=1000, step=10)
priority_area = st.sidebar.selectbox("Priority Area:", ["Rural", "Urban", "Suburban"])
signal_threshold = st.sidebar.slider("Signal Strength Threshold (dBm):", min_value=-120, max_value=-30, value=-80)
terrain_weight = st.sidebar.slider("Terrain Difficulty Weight:", min_value=0.0, max_value=1.0, value=0.5)
cost_weight = st.sidebar.slider("Cost Weight:", min_value=0.0, max_value=1.0, value=0.5)
include_human_readable = st.sidebar.checkbox("Include Human-Readable Info", value=True)
# Display Dataset Options
data_to_view = st.sidebar.selectbox("Select Dataset to View:", ["Network Insights", "Filtered Terrain Data"])
# Terrain and Connectivity Analysis Section
st.header("Terrain and Connectivity Analysis")
# Simulate Terrain Data
def generate_terrain_data():
np.random.seed(42)
data = {
"Region": [f"Region-{i}" for i in range(1, 11)],
"Latitude": np.random.uniform(30.0, 50.0, size=10),
"Longitude": np.random.uniform(-120.0, -70.0, size=10),
"Terrain Difficulty (0-10)": np.random.randint(1, 10, size=10),
"Signal Strength (dBm)": np.random.randint(-120, -30, size=10),
"Cost ($1000s)": np.random.randint(50, 200, size=10),
"Priority Area": np.random.choice(["Rural", "Urban", "Suburban"], size=10),
"Description": [
"Flat area with minimal obstacles",
"Hilly terrain, moderate construction difficulty",
"Dense urban area with high costs",
"Suburban area, balanced terrain",
"Mountainous region, challenging setup",
"Remote rural area, sparse population",
"Coastal area, potential for high signal interference",
"Industrial zone, requires robust infrastructure",
"Dense forest region, significant signal attenuation",
"Open plains, optimal for cost-effective deployment"
]
}
return pd.DataFrame(data)
terrain_data = generate_terrain_data()
# Add Location Name to Filtered Data
if include_human_readable:
filtered_data = terrain_data[
(terrain_data["Signal Strength (dBm)"] >= signal_threshold) &
(terrain_data["Cost ($1000s)"] <= budget) &
(terrain_data["Priority Area"] == priority_area)
]
filtered_data["Location Name"] = filtered_data.apply(
lambda row: get_location_name(row["Latitude"], row["Longitude"]), axis=1
)
else:
filtered_data = terrain_data[
(terrain_data["Signal Strength (dBm)"] >= signal_threshold) &
(terrain_data["Cost ($1000s)"] <= budget) &
(terrain_data["Priority Area"] == priority_area)
]
# Add Composite Score for Ranking
filtered_data["Composite Score"] = (
(1 - terrain_weight) * filtered_data["Signal Strength (dBm)"] +
(terrain_weight) * (10 - filtered_data["Terrain Difficulty (0-10)"]) -
(cost_weight) * filtered_data["Cost ($1000s)"]
)
# Display Selected Dataset
if data_to_view == "Network Insights":
st.subheader("Network Insights Dataset")
st.dataframe(network_insights)
elif data_to_view == "Filtered Terrain Data":
st.subheader("Filtered Terrain Data")
columns_to_display = [
"Region", "Location Name", "Priority Area", "Signal Strength (dBm)",
"Cost ($1000s)", "Terrain Difficulty (0-10)", "Description", "Composite Score"
] if include_human_readable else [
"Region", "Priority Area", "Signal Strength (dBm)", "Cost ($1000s)", "Terrain Difficulty (0-10)", "Description", "Composite Score"
]
st.dataframe(filtered_data[columns_to_display])
# Map Visualization
st.header("Geographical Map of Regions")
if not filtered_data.empty:
map_center = [filtered_data["Latitude"].mean(), filtered_data["Longitude"].mean()]
region_map = folium.Map(location=map_center, zoom_start=6)
for _, row in filtered_data.iterrows():
folium.Marker(
location=[row["Latitude"], row["Longitude"]],
popup=(
f"<b>Region:</b> {row['Region']}<br>"
f"<b>Location:</b> {row.get('Location Name', 'N/A')}<br>"
f"<b>Description:</b> {row['Description']}<br>"
f"<b>Signal Strength:</b> {row['Signal Strength (dBm)']} dBm<br>"
f"<b>Cost:</b> ${row['Cost ($1000s)']}k<br>"
f"<b>Terrain Difficulty:</b> {row['Terrain Difficulty (0-10)']}"
),
icon=folium.Icon(color="blue", icon="info-sign")
).add_to(region_map)
st_folium(region_map, width=700, height=500)
else:
st.write("No regions match the selected criteria.")
# Visualization
fig = px.scatter(
filtered_data,
x="Cost ($1000s)",
y="Signal Strength (dBm)",
size="Terrain Difficulty (0-10)",
color="Region",
title="Signal Strength vs. Cost",
labels={
"Cost ($1000s)": "Cost in $1000s",
"Signal Strength (dBm)": "Signal Strength in dBm",
},
)
st.plotly_chart(fig)
# Recommendation Engine
st.header("Deployment Recommendations")
def recommend_deployment(data):
if data.empty:
return "No viable deployment regions within the specified parameters."
best_region = data.loc[data["Composite Score"].idxmax()]
return f"Recommended Region: {best_region['Region']} with Composite Score: {best_region['Composite Score']:.2f}, Signal Strength: {best_region['Signal Strength (dBm)']} dBm, Terrain Difficulty: {best_region['Terrain Difficulty (0-10)']}, and Estimated Cost: ${best_region['Cost ($1000s)']}k\nDescription: {best_region['Description']}\nLocation Name: {best_region.get('Location Name', 'N/A')}"
recommendation = recommend_deployment(filtered_data)
st.subheader(recommendation)
# Footer
st.sidebar.markdown("---")
st.sidebar.markdown(
"**Developed for Hackathon using Hugging Face Infinite Dataset Hub**\n\n[Visit Hugging Face](https://huggingface.co)")
|