Rafay17 commited on
Commit
e8ec2f9
·
verified ·
1 Parent(s): b75c2ab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -51
app.py CHANGED
@@ -1,56 +1,18 @@
1
- import gradio as gr
2
- from unsloth import FastLanguageModel
3
- from transformers import AutoTokenizer, TextStreamer
4
 
5
  # Load the model and tokenizer
6
- model_name = "Rafay17/Llama3.2_1b_customModel2" # Your custom model
7
- model, tokenizer = FastLanguageModel.from_pretrained(model_name)
8
- FastLanguageModel.for_inference(model) # Enable the model for inference
9
 
10
- # Function to generate a response
11
- def generate_response(message, history, max_tokens, temperature, top_p):
12
- # Prepare the labeled prompt for response generation
13
- labeled_prompt = f"User Input: {message}\nResponse:"
14
 
15
- # Tokenize the input
16
- inputs = tokenizer(
17
- [labeled_prompt],
18
- return_tensors="pt",
19
- padding=True,
20
- truncation=True,
21
- max_length=512,
22
- ).to("cuda")
23
 
24
- # Generate the response
25
- text_streamer = TextStreamer(tokenizer, skip_prompt=True)
26
- response = ""
27
- for token in model.generate(
28
- input_ids=inputs.input_ids,
29
- attention_mask=inputs.attention_mask,
30
- streamer=text_streamer,
31
- max_new_tokens=max_tokens,
32
- temperature=temperature,
33
- top_p=top_p,
34
- pad_token_id=tokenizer.eos_token_id,
35
- ):
36
- response += token
37
-
38
- return response
39
-
40
-
41
- # Define the Gradio interface
42
- demo = gr.Interface(
43
- fn=generate_response,
44
- inputs=[
45
- gr.Textbox(lines=2, placeholder="Enter your message here..."),
46
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
47
- gr.Slider(minimum=1, maximum=512, value=64, label="Max new tokens"),
48
- gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"),
49
- gr.Slider(minimum=0.1, maximum=1.0, value=0.9, label="Top-p (nucleus sampling)"),
50
- ],
51
- outputs=gr.Textbox(label="Chatbot Response"),
52
- live=True
53
- )
54
-
55
- if __name__ == "__main__":
56
- demo.launch()
 
1
+ # Import necessary libraries
2
+ from transformers import AutoModel, AutoTokenizer
 
3
 
4
  # Load the model and tokenizer
5
+ model_name = "Rafay17/Llama3.2_1b_customModle2"
6
+ model = AutoModel.from_pretrained(model_name)
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
 
9
+ # Prepare your input text
10
+ input_text = "Your input text goes here."
11
+ inputs = tokenizer(input_text, return_tensors="pt")
 
12
 
13
+ # Forward pass to get model outputs
14
+ with torch.no_grad():
15
+ outputs = model(**inputs)
 
 
 
 
 
16
 
17
+ # Do something with the outputs
18
+ print(outputs)