Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,87 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
|
3 |
|
4 |
# Load the model and tokenizer
|
5 |
-
model_name = "Rafay17/Llama3.
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
-
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda") # Ensure to load the model on GPU
|
8 |
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
|
|
|
|
13 |
def generate_response(input_text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Prepare the input for the model
|
15 |
-
inputs = tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Set up the text streamer to stream the generated response
|
18 |
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
19 |
|
20 |
# Generate the response
|
21 |
-
with torch.no_grad():
|
22 |
model.generate(
|
23 |
input_ids=inputs.input_ids,
|
24 |
attention_mask=inputs.attention_mask,
|
25 |
streamer=text_streamer,
|
26 |
-
max_new_tokens=
|
27 |
pad_token_id=tokenizer.eos_token_id,
|
28 |
)
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, TextStreamer
|
2 |
+
from unsloth import FastLanguageModel
|
3 |
import torch
|
|
|
4 |
|
5 |
# Load the model and tokenizer
|
6 |
+
model_name = "Rafay17/Llama3.2_1b_customModle2" # Use your specific model name
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
8 |
|
9 |
+
model = FastLanguageModel.from_pretrained(
|
10 |
+
model_name=model_name,
|
11 |
+
max_seq_length=512, # Adjust as needed
|
12 |
+
dtype="float16", # Adjust as needed
|
13 |
+
load_in_4bit=True # Adjust based on your needs
|
14 |
+
)
|
15 |
|
16 |
+
FastLanguageModel.for_inference(model) # Call this immediately after loading the model
|
17 |
+
|
18 |
+
# Function to generate a response
|
19 |
def generate_response(input_text):
|
20 |
+
# Prepare the labeled prompt for the model
|
21 |
+
labeled_prompt = (
|
22 |
+
"Please provide the response with the following labels:\n"
|
23 |
+
"Speaker: [SPEAKER]\n"
|
24 |
+
"Text: [TEXT]\n"
|
25 |
+
"Sentiment: [SENTIMENT]\n"
|
26 |
+
"Emotion: [EMOTION]\n"
|
27 |
+
"Intent: [INTENT]\n"
|
28 |
+
"Tone: [TONE]\n"
|
29 |
+
"Confidence Level: [CONFIDENCE]\n"
|
30 |
+
"Frustration Level: [FRUSTRATION]\n"
|
31 |
+
"Response Length: [LENGTH]\n"
|
32 |
+
"Action Required: [ACTION]\n"
|
33 |
+
"Interruption: [INTERRUPTION]\n"
|
34 |
+
"Cooperation Level: [COOPERATION]\n"
|
35 |
+
"Clarity: [CLARITY]\n"
|
36 |
+
"Objective: [OBJECTIVE]\n"
|
37 |
+
"Timeline: [TIMELINE]\n"
|
38 |
+
"Motivation: [MOTIVATION]\n"
|
39 |
+
"Conversation Stage: [STAGE]\n"
|
40 |
+
"Resolution: [RESOLUTION]\n"
|
41 |
+
"Context: [CONTEXT]\n"
|
42 |
+
"Urgency: [URGENCY]\n"
|
43 |
+
"Problem Type: [PROBLEM]\n"
|
44 |
+
"Key Words: [KEYWORDS]\n"
|
45 |
+
"Expected Detail: [DETAIL]\n"
|
46 |
+
"Time Gap: [TIME]\n"
|
47 |
+
"Client Expectation: [EXPECTATION]\n"
|
48 |
+
"Channel: [CHANNEL]\n"
|
49 |
+
"Power Relationship: [POWER]\n\n"
|
50 |
+
f"User Input: {input_text}\n"
|
51 |
+
"Response:"
|
52 |
+
)
|
53 |
+
|
54 |
# Prepare the input for the model
|
55 |
+
inputs = tokenizer(
|
56 |
+
[labeled_prompt],
|
57 |
+
return_tensors="pt",
|
58 |
+
padding=True,
|
59 |
+
truncation=True,
|
60 |
+
max_length=512, # Ensure this matches your model's max length
|
61 |
+
).to("cuda")
|
62 |
|
63 |
# Set up the text streamer to stream the generated response
|
64 |
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
65 |
|
66 |
# Generate the response
|
67 |
+
with torch.no_grad(): # Disable gradient calculation for inference
|
68 |
model.generate(
|
69 |
input_ids=inputs.input_ids,
|
70 |
attention_mask=inputs.attention_mask,
|
71 |
streamer=text_streamer,
|
72 |
+
max_new_tokens=100, # Adjust this value as needed
|
73 |
pad_token_id=tokenizer.eos_token_id,
|
74 |
)
|
75 |
|
76 |
+
# Function to take user input and generate output
|
77 |
+
def user_interaction():
|
78 |
+
while True:
|
79 |
+
user_input = input("Enter conversation details (or type 'exit' to quit): ")
|
80 |
+
if user_input.lower() == 'exit':
|
81 |
+
print("Exiting the program.")
|
82 |
+
break
|
83 |
+
print("Generating response for input:")
|
84 |
+
generate_response(user_input)
|
85 |
+
|
86 |
+
# Start the user interaction
|
87 |
+
user_interaction()
|