Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, FastLanguageModel
|
3 |
+
|
4 |
+
# Load the model and tokenizer
|
5 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
6 |
+
model_name="lora_model", # Replace with your trained model name
|
7 |
+
max_seq_length=512,
|
8 |
+
dtype="float16",
|
9 |
+
load_in_4bit=True,
|
10 |
+
)
|
11 |
+
FastLanguageModel.for_inference(model)
|
12 |
+
|
13 |
+
# Define the inference function
|
14 |
+
def generate_response(user_input):
|
15 |
+
# Prepare the input for the model
|
16 |
+
labeled_prompt = (
|
17 |
+
"Please provide the response with the following labels:\n"
|
18 |
+
f"User Input: {user_input}\n"
|
19 |
+
"Response:"
|
20 |
+
)
|
21 |
+
|
22 |
+
inputs = tokenizer(
|
23 |
+
[labeled_prompt],
|
24 |
+
return_tensors="pt",
|
25 |
+
padding=True,
|
26 |
+
truncation=True,
|
27 |
+
max_length=512,
|
28 |
+
).to("cuda")
|
29 |
+
|
30 |
+
response = model.generate(input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id)
|
31 |
+
return tokenizer.decode(response[0], skip_special_tokens=True)
|
32 |
+
|
33 |
+
# Create a Gradio interface
|
34 |
+
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", title="Chatbot Interface", description="Enter your message below:")
|
35 |
+
|
36 |
+
# Launch the app
|
37 |
+
iface.launch()
|