|
import gradio as gr |
|
import torch |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
|
|
model_name = "Rafay17/Llama3.2_1b_customModle2" |
|
model = AutoModel.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
def generate_output(input_text): |
|
|
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
|
|
return outputs.last_hidden_state |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_output, |
|
inputs=gr.Textbox(label="Input Text"), |
|
outputs=gr.Textbox(label="Model Output"), |
|
title="Text Processing with Llama Model", |
|
description="Enter text to process it with the Llama3.2 model." |
|
) |
|
|
|
|
|
iface.launch() |
|
|