Spaces:
Sleeping
Sleeping
Upload vit_model.py
Browse files- vit_model.py +422 -0
vit_model.py
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
original code from rwightman:
|
3 |
+
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
4 |
+
"""
|
5 |
+
from functools import partial
|
6 |
+
from collections import OrderedDict
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
|
12 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
13 |
+
"""
|
14 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
15 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
16 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
17 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
18 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
19 |
+
'survival rate' as the argument.
|
20 |
+
"""
|
21 |
+
if drop_prob == 0. or not training:
|
22 |
+
return x
|
23 |
+
keep_prob = 1 - drop_prob
|
24 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
25 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
26 |
+
random_tensor.floor_() # binarize
|
27 |
+
output = x.div(keep_prob) * random_tensor
|
28 |
+
return output
|
29 |
+
|
30 |
+
|
31 |
+
class DropPath(nn.Module):
|
32 |
+
"""
|
33 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
34 |
+
"""
|
35 |
+
def __init__(self, drop_prob=None):
|
36 |
+
super(DropPath, self).__init__()
|
37 |
+
self.drop_prob = drop_prob
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
return drop_path(x, self.drop_prob, self.training)
|
41 |
+
|
42 |
+
|
43 |
+
class PatchEmbed(nn.Module):
|
44 |
+
"""
|
45 |
+
2D Image to Patch Embedding
|
46 |
+
"""
|
47 |
+
def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):
|
48 |
+
super().__init__()
|
49 |
+
img_size = (img_size, img_size)
|
50 |
+
patch_size = (patch_size, patch_size)
|
51 |
+
self.img_size = img_size
|
52 |
+
self.patch_size = patch_size
|
53 |
+
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
54 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
55 |
+
|
56 |
+
self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
|
57 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
B, C, H, W = x.shape
|
61 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
62 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
63 |
+
|
64 |
+
# flatten: [B, C, H, W] -> [B, C, HW]
|
65 |
+
# transpose: [B, C, HW] -> [B, HW, C]
|
66 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
67 |
+
x = self.norm(x)
|
68 |
+
return x
|
69 |
+
|
70 |
+
|
71 |
+
class Attention(nn.Module):
|
72 |
+
def __init__(self,
|
73 |
+
dim, # 输入token的dim
|
74 |
+
num_heads=8,
|
75 |
+
qkv_bias=False,
|
76 |
+
qk_scale=None,
|
77 |
+
attn_drop_ratio=0.,
|
78 |
+
proj_drop_ratio=0.):
|
79 |
+
super(Attention, self).__init__()
|
80 |
+
self.num_heads = num_heads
|
81 |
+
head_dim = dim // num_heads
|
82 |
+
self.scale = qk_scale or head_dim ** -0.5
|
83 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
84 |
+
self.attn_drop = nn.Dropout(attn_drop_ratio)
|
85 |
+
self.proj = nn.Linear(dim, dim)
|
86 |
+
self.proj_drop = nn.Dropout(proj_drop_ratio)
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
# [batch_size, num_patches + 1, total_embed_dim]
|
90 |
+
B, N, C = x.shape
|
91 |
+
|
92 |
+
# qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
|
93 |
+
# reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
|
94 |
+
# permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
|
95 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
96 |
+
# [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
|
97 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
98 |
+
|
99 |
+
# transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
|
100 |
+
# @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
|
101 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
102 |
+
attn = attn.softmax(dim=-1)
|
103 |
+
attn = self.attn_drop(attn)
|
104 |
+
|
105 |
+
# @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
|
106 |
+
# transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
|
107 |
+
# reshape: -> [batch_size, num_patches + 1, total_embed_dim]
|
108 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
109 |
+
x = self.proj(x)
|
110 |
+
x = self.proj_drop(x)
|
111 |
+
return x
|
112 |
+
|
113 |
+
|
114 |
+
class Mlp(nn.Module):
|
115 |
+
"""
|
116 |
+
MLP as used in Vision Transformer, MLP-Mixer and related networks
|
117 |
+
"""
|
118 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
119 |
+
super().__init__()
|
120 |
+
out_features = out_features or in_features
|
121 |
+
hidden_features = hidden_features or in_features
|
122 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
123 |
+
self.act = act_layer()
|
124 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
125 |
+
self.drop = nn.Dropout(drop)
|
126 |
+
|
127 |
+
def forward(self, x):
|
128 |
+
x = self.fc1(x)
|
129 |
+
x = self.act(x)
|
130 |
+
x = self.drop(x)
|
131 |
+
x = self.fc2(x)
|
132 |
+
x = self.drop(x)
|
133 |
+
return x
|
134 |
+
|
135 |
+
|
136 |
+
class Block(nn.Module):
|
137 |
+
def __init__(self,
|
138 |
+
dim,
|
139 |
+
num_heads,
|
140 |
+
mlp_ratio=4.,
|
141 |
+
qkv_bias=False,
|
142 |
+
qk_scale=None,
|
143 |
+
drop_ratio=0.,
|
144 |
+
attn_drop_ratio=0.,
|
145 |
+
drop_path_ratio=0.,
|
146 |
+
act_layer=nn.GELU,
|
147 |
+
norm_layer=nn.LayerNorm):
|
148 |
+
super(Block, self).__init__()
|
149 |
+
self.norm1 = norm_layer(dim)
|
150 |
+
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
151 |
+
attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)
|
152 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
153 |
+
self.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
|
154 |
+
self.norm2 = norm_layer(dim)
|
155 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
156 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)
|
157 |
+
|
158 |
+
def forward(self, x):
|
159 |
+
x = x + self.drop_path(self.attn(self.norm1(x)))
|
160 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
161 |
+
return x
|
162 |
+
|
163 |
+
|
164 |
+
class VisionTransformer(nn.Module):
|
165 |
+
def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,
|
166 |
+
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True,
|
167 |
+
qk_scale=None, representation_size=None, distilled=False, drop_ratio=0.,
|
168 |
+
attn_drop_ratio=0., drop_path_ratio=0., embed_layer=PatchEmbed, norm_layer=None,
|
169 |
+
act_layer=None):
|
170 |
+
"""
|
171 |
+
Args:
|
172 |
+
img_size (int, tuple): input image size
|
173 |
+
patch_size (int, tuple): patch size
|
174 |
+
in_c (int): number of input channels
|
175 |
+
num_classes (int): number of classes for classification head
|
176 |
+
embed_dim (int): embedding dimension
|
177 |
+
depth (int): depth of transformer
|
178 |
+
num_heads (int): number of attention heads
|
179 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
180 |
+
qkv_bias (bool): enable bias for qkv if True
|
181 |
+
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
182 |
+
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
|
183 |
+
distilled (bool): model includes a distillation token and head as in DeiT models
|
184 |
+
drop_ratio (float): dropout rate
|
185 |
+
attn_drop_ratio (float): attention dropout rate
|
186 |
+
drop_path_ratio (float): stochastic depth rate
|
187 |
+
embed_layer (nn.Module): patch embedding layer
|
188 |
+
norm_layer: (nn.Module): normalization layer
|
189 |
+
"""
|
190 |
+
super(VisionTransformer, self).__init__()
|
191 |
+
self.num_classes = num_classes
|
192 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
193 |
+
self.num_tokens = 2 if distilled else 1
|
194 |
+
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
195 |
+
act_layer = act_layer or nn.GELU
|
196 |
+
|
197 |
+
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)
|
198 |
+
num_patches = self.patch_embed.num_patches
|
199 |
+
|
200 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
201 |
+
self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
|
202 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
203 |
+
self.pos_drop = nn.Dropout(p=drop_ratio)
|
204 |
+
|
205 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)] # stochastic depth decay rule
|
206 |
+
self.blocks = nn.Sequential(*[
|
207 |
+
Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
208 |
+
drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],
|
209 |
+
norm_layer=norm_layer, act_layer=act_layer)
|
210 |
+
for i in range(depth)
|
211 |
+
])
|
212 |
+
self.norm = norm_layer(embed_dim)
|
213 |
+
|
214 |
+
# Representation layer
|
215 |
+
if representation_size and not distilled:
|
216 |
+
self.has_logits = True
|
217 |
+
self.num_features = representation_size
|
218 |
+
self.pre_logits = nn.Sequential(OrderedDict([
|
219 |
+
("fc", nn.Linear(embed_dim, representation_size)),
|
220 |
+
("act", nn.Tanh())
|
221 |
+
]))
|
222 |
+
else:
|
223 |
+
self.has_logits = False
|
224 |
+
self.pre_logits = nn.Identity()
|
225 |
+
|
226 |
+
# Classifier head(s)
|
227 |
+
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
228 |
+
self.head_dist = None
|
229 |
+
if distilled:
|
230 |
+
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
|
231 |
+
|
232 |
+
# Weight init
|
233 |
+
nn.init.trunc_normal_(self.pos_embed, std=0.02)
|
234 |
+
if self.dist_token is not None:
|
235 |
+
nn.init.trunc_normal_(self.dist_token, std=0.02)
|
236 |
+
|
237 |
+
nn.init.trunc_normal_(self.cls_token, std=0.02)
|
238 |
+
self.apply(_init_vit_weights)
|
239 |
+
|
240 |
+
def forward_features(self, x):
|
241 |
+
# [B, C, H, W] -> [B, num_patches, embed_dim]
|
242 |
+
x = self.patch_embed(x) # [B, 196, 768]
|
243 |
+
# [1, 1, 768] -> [B, 1, 768]
|
244 |
+
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
|
245 |
+
if self.dist_token is None:
|
246 |
+
x = torch.cat((cls_token, x), dim=1) # [B, 197, 768]
|
247 |
+
else:
|
248 |
+
x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
|
249 |
+
|
250 |
+
x = self.pos_drop(x + self.pos_embed)
|
251 |
+
x = self.blocks(x)
|
252 |
+
x = self.norm(x)
|
253 |
+
if self.dist_token is None:
|
254 |
+
return self.pre_logits(x[:, 0])
|
255 |
+
else:
|
256 |
+
return x[:, 0], x[:, 1]
|
257 |
+
|
258 |
+
def forward(self, x):
|
259 |
+
x = self.forward_features(x)
|
260 |
+
if self.head_dist is not None:
|
261 |
+
x, x_dist = self.head(x[0]), self.head_dist(x[1])
|
262 |
+
if self.training and not torch.jit.is_scripting():
|
263 |
+
# during inference, return the average of both classifier predictions
|
264 |
+
return x, x_dist
|
265 |
+
else:
|
266 |
+
return (x + x_dist) / 2
|
267 |
+
else:
|
268 |
+
x = self.head(x)
|
269 |
+
return x
|
270 |
+
|
271 |
+
|
272 |
+
def _init_vit_weights(m):
|
273 |
+
"""
|
274 |
+
ViT weight initialization
|
275 |
+
:param m: module
|
276 |
+
"""
|
277 |
+
if isinstance(m, nn.Linear):
|
278 |
+
nn.init.trunc_normal_(m.weight, std=.01)
|
279 |
+
if m.bias is not None:
|
280 |
+
nn.init.zeros_(m.bias)
|
281 |
+
elif isinstance(m, nn.Conv2d):
|
282 |
+
nn.init.kaiming_normal_(m.weight, mode="fan_out")
|
283 |
+
if m.bias is not None:
|
284 |
+
nn.init.zeros_(m.bias)
|
285 |
+
elif isinstance(m, nn.LayerNorm):
|
286 |
+
nn.init.zeros_(m.bias)
|
287 |
+
nn.init.ones_(m.weight)
|
288 |
+
|
289 |
+
|
290 |
+
def vit_base_patch16_224(num_classes: int = 1000):
|
291 |
+
"""
|
292 |
+
ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
|
293 |
+
ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
294 |
+
weights ported from official Google JAX impl:
|
295 |
+
链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA 密码: eu9f
|
296 |
+
"""
|
297 |
+
model = VisionTransformer(img_size=224,
|
298 |
+
patch_size=16,
|
299 |
+
embed_dim=768,
|
300 |
+
depth=12,
|
301 |
+
num_heads=12,
|
302 |
+
representation_size=None,
|
303 |
+
num_classes=num_classes)
|
304 |
+
return model
|
305 |
+
|
306 |
+
|
307 |
+
def vit_base_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
|
308 |
+
"""
|
309 |
+
ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
|
310 |
+
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
311 |
+
weights ported from official Google JAX impl:
|
312 |
+
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth
|
313 |
+
"""
|
314 |
+
model = VisionTransformer(img_size=224,
|
315 |
+
patch_size=16,
|
316 |
+
embed_dim=768,
|
317 |
+
depth=12,
|
318 |
+
num_heads=12,
|
319 |
+
representation_size=768 if has_logits else None,
|
320 |
+
num_classes=num_classes)
|
321 |
+
return model
|
322 |
+
|
323 |
+
|
324 |
+
def vit_base_patch32_224(num_classes: int = 1000):
|
325 |
+
"""
|
326 |
+
ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
|
327 |
+
ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
328 |
+
weights ported from official Google JAX impl:
|
329 |
+
链接: https://pan.baidu.com/s/1hCv0U8pQomwAtHBYc4hmZg 密码: s5hl
|
330 |
+
"""
|
331 |
+
model = VisionTransformer(img_size=224,
|
332 |
+
patch_size=32,
|
333 |
+
embed_dim=768,
|
334 |
+
depth=12,
|
335 |
+
num_heads=12,
|
336 |
+
representation_size=None,
|
337 |
+
num_classes=num_classes)
|
338 |
+
return model
|
339 |
+
|
340 |
+
|
341 |
+
def vit_base_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
|
342 |
+
"""
|
343 |
+
ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
|
344 |
+
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
345 |
+
weights ported from official Google JAX impl:
|
346 |
+
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth
|
347 |
+
"""
|
348 |
+
model = VisionTransformer(img_size=224,
|
349 |
+
patch_size=32,
|
350 |
+
embed_dim=768,
|
351 |
+
depth=12,
|
352 |
+
num_heads=12,
|
353 |
+
representation_size=768 if has_logits else None,
|
354 |
+
num_classes=num_classes)
|
355 |
+
return model
|
356 |
+
|
357 |
+
|
358 |
+
def vit_large_patch16_224(num_classes: int = 1000):
|
359 |
+
"""
|
360 |
+
ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
|
361 |
+
ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
362 |
+
weights ported from official Google JAX impl:
|
363 |
+
链接: https://pan.baidu.com/s/1cxBgZJJ6qUWPSBNcE4TdRQ 密码: qqt8
|
364 |
+
"""
|
365 |
+
model = VisionTransformer(img_size=224,
|
366 |
+
patch_size=16,
|
367 |
+
embed_dim=1024,
|
368 |
+
depth=24,
|
369 |
+
num_heads=16,
|
370 |
+
representation_size=None,
|
371 |
+
num_classes=num_classes)
|
372 |
+
return model
|
373 |
+
|
374 |
+
|
375 |
+
def vit_large_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
|
376 |
+
"""
|
377 |
+
ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
|
378 |
+
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
379 |
+
weights ported from official Google JAX impl:
|
380 |
+
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth
|
381 |
+
"""
|
382 |
+
model = VisionTransformer(img_size=224,
|
383 |
+
patch_size=16,
|
384 |
+
embed_dim=1024,
|
385 |
+
depth=24,
|
386 |
+
num_heads=16,
|
387 |
+
representation_size=1024 if has_logits else None,
|
388 |
+
num_classes=num_classes)
|
389 |
+
return model
|
390 |
+
|
391 |
+
|
392 |
+
def vit_large_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
|
393 |
+
"""
|
394 |
+
ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
|
395 |
+
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
396 |
+
weights ported from official Google JAX impl:
|
397 |
+
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth
|
398 |
+
"""
|
399 |
+
model = VisionTransformer(img_size=224,
|
400 |
+
patch_size=32,
|
401 |
+
embed_dim=1024,
|
402 |
+
depth=24,
|
403 |
+
num_heads=16,
|
404 |
+
representation_size=1024 if has_logits else None,
|
405 |
+
num_classes=num_classes)
|
406 |
+
return model
|
407 |
+
|
408 |
+
|
409 |
+
def vit_huge_patch14_224_in21k(num_classes: int = 21843, has_logits: bool = True):
|
410 |
+
"""
|
411 |
+
ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
|
412 |
+
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
413 |
+
NOTE: converted weights not currently available, too large for github release hosting.
|
414 |
+
"""
|
415 |
+
model = VisionTransformer(img_size=224,
|
416 |
+
patch_size=14,
|
417 |
+
embed_dim=1280,
|
418 |
+
depth=32,
|
419 |
+
num_heads=16,
|
420 |
+
representation_size=1280 if has_logits else None,
|
421 |
+
num_classes=num_classes)
|
422 |
+
return model
|