Spaces:
Running
on
T4
Running
on
T4
sparkleman
commited on
Commit
·
109a0c8
0
Parent(s):
INIT
Browse files- .gitignore +16 -0
- .python-version +1 -0
- Dockerfile +27 -0
- README.md +21 -0
- api_types.py +82 -0
- app.py +555 -0
- openai_test.py +78 -0
- pyproject.toml +47 -0
- utils.py +35 -0
- uv.lock +0 -0
.gitignore
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python-generated files
|
2 |
+
__pycache__/
|
3 |
+
*.py[oc]
|
4 |
+
build/
|
5 |
+
dist/
|
6 |
+
wheels/
|
7 |
+
*.egg-info
|
8 |
+
|
9 |
+
# Virtual environments
|
10 |
+
.venv
|
11 |
+
|
12 |
+
.cache
|
13 |
+
|
14 |
+
*pth
|
15 |
+
*.pt
|
16 |
+
*.st
|
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.10
|
Dockerfile
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ARG CUDA_IMAGE="12.1.1-devel-ubuntu22.04"
|
2 |
+
FROM nvidia/cuda:${CUDA_IMAGE}
|
3 |
+
|
4 |
+
RUN apt-get update && apt-get install --no-install-recommends -y \
|
5 |
+
build-essential \
|
6 |
+
git \
|
7 |
+
ffmpeg &&
|
8 |
+
apt-get clean && rm -rf /var/lib/apt/lists/*
|
9 |
+
|
10 |
+
COPY --from=ghcr.io/astral-sh/uv:latest /uv /uvx /bin/
|
11 |
+
|
12 |
+
COPY . .
|
13 |
+
|
14 |
+
RUN uv sync --frozen
|
15 |
+
|
16 |
+
RUN useradd -m -u 1000 user
|
17 |
+
# Switch to the "user" user
|
18 |
+
USER user
|
19 |
+
|
20 |
+
ENV HOME=/home/user \
|
21 |
+
PATH=/home/user/.local/bin:$PATH
|
22 |
+
|
23 |
+
WORKDIR $HOME/app
|
24 |
+
|
25 |
+
COPY --chown=user . $HOME/app
|
26 |
+
|
27 |
+
CMD ["uv", "app.py","--strategy","cuda fp16","--model_title","RWKV-x070-World-0.1B-v2.8-20241210-ctx4096","--download_repo_id","BlinkDL/rwkv-7-world"]
|
README.md
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Simple RWKV OpenAI-Compatible API
|
2 |
+
|
3 |
+
## Usage
|
4 |
+
|
5 |
+
`RWKV-x070-World-0.1B-v2.8-20241210-ctx4096`
|
6 |
+
|
7 |
+
```shell
|
8 |
+
python app.py --strategy "cuda fp16" --model_title "RWKV-x070-World-0.1B-v2.8-20241210-ctx4096" --download_repo_id "BlinkDL/rwkv-7-world" --download_model_dir ./
|
9 |
+
```
|
10 |
+
|
11 |
+
`RWKV7-G1-0.1B-68%trained-20250303-ctx4k`
|
12 |
+
|
13 |
+
```shell
|
14 |
+
python app.py --strategy "cuda fp16" --model_title "RWKV7-G1-0.1B-68%trained-20250303-ctx4k" --download_repo_id "BlinkDL/temp-latest-training-models" --download_model_dir ./
|
15 |
+
```
|
16 |
+
|
17 |
+
`RWKV7-G1-0.1B-68%trained-20250303-ctx4k`
|
18 |
+
|
19 |
+
```shell
|
20 |
+
python app.py --strategy "cuda fp16" --model_title "RWKV7-G1-0.4B-32%trained-20250304-ctx4k" --download_repo_id "BlinkDL/temp-latest-training-models" --download_model_dir ./
|
21 |
+
```
|
api_types.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Union, Dict, Any, Literal
|
2 |
+
from pydantic import BaseModel, Field
|
3 |
+
|
4 |
+
|
5 |
+
class ChatMessage(BaseModel):
|
6 |
+
role: str = Field()
|
7 |
+
content: str = Field()
|
8 |
+
|
9 |
+
|
10 |
+
class Logprob(BaseModel):
|
11 |
+
token: str
|
12 |
+
logprob: float
|
13 |
+
top_logprobs: Optional[List[Dict[str, Any]]] = None
|
14 |
+
|
15 |
+
|
16 |
+
class LogprobsContent(BaseModel):
|
17 |
+
content: Optional[List[Logprob]] = None
|
18 |
+
refusal: Optional[List[Logprob]] = None
|
19 |
+
|
20 |
+
|
21 |
+
class FunctionCall(BaseModel):
|
22 |
+
name: str
|
23 |
+
arguments: str
|
24 |
+
|
25 |
+
|
26 |
+
class ChatCompletionMessage(BaseModel):
|
27 |
+
role: Optional[str] = Field(
|
28 |
+
None, description="The role of the author of this message"
|
29 |
+
)
|
30 |
+
content: Optional[str] = Field(None, description="The contents of the message")
|
31 |
+
reasoning_content: Optional[str] = Field(
|
32 |
+
None, description="The reasoning contents of the message"
|
33 |
+
)
|
34 |
+
tool_calls: Optional[List[Dict[str, Any]]] = Field(
|
35 |
+
None, description="Tool calls generated by the model"
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
class PromptTokensDetails(BaseModel):
|
40 |
+
cached_tokens: int
|
41 |
+
|
42 |
+
|
43 |
+
class CompletionTokensDetails(BaseModel):
|
44 |
+
reasoning_tokens: int
|
45 |
+
accepted_prediction_tokens: int
|
46 |
+
rejected_prediction_tokens: int
|
47 |
+
|
48 |
+
|
49 |
+
class Usage(BaseModel):
|
50 |
+
prompt_tokens: int
|
51 |
+
completion_tokens: int
|
52 |
+
total_tokens: int
|
53 |
+
prompt_tokens_details: Optional[PromptTokensDetails]
|
54 |
+
# completion_tokens_details: CompletionTokensDetails
|
55 |
+
|
56 |
+
|
57 |
+
class ChatCompletionChoice(BaseModel):
|
58 |
+
index: int
|
59 |
+
message: Optional[ChatCompletionMessage] = None
|
60 |
+
delta: Optional[ChatCompletionMessage] = None
|
61 |
+
logprobs: Optional[LogprobsContent] = None
|
62 |
+
finish_reason: Optional[str] = Field(
|
63 |
+
..., description="Reason for stopping: stop, length, content_filter, tool_calls"
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
class ChatCompletion(BaseModel):
|
68 |
+
id: str = Field(..., description="Unique identifier for the chat completion")
|
69 |
+
object: Literal["chat.completion"] = "chat.completion"
|
70 |
+
created: int = Field(..., description="Unix timestamp of creation")
|
71 |
+
model: str
|
72 |
+
choices: List[ChatCompletionChoice]
|
73 |
+
usage: Usage
|
74 |
+
|
75 |
+
|
76 |
+
class ChatCompletionChunk(BaseModel):
|
77 |
+
id: str = Field(..., description="Unique identifier for the chat completion")
|
78 |
+
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
|
79 |
+
created: int = Field(..., description="Unix timestamp of creation")
|
80 |
+
model: str
|
81 |
+
choices: List[ChatCompletionChoice]
|
82 |
+
usage: Optional[Usage]
|
app.py
ADDED
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, copy, types, gc, sys, re, time, collections, asyncio
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
from loguru import logger
|
4 |
+
|
5 |
+
from snowflake import SnowflakeGenerator
|
6 |
+
|
7 |
+
CompletionIdGenerator = SnowflakeGenerator(42, timestamp=1741101491595)
|
8 |
+
|
9 |
+
from pynvml import *
|
10 |
+
|
11 |
+
nvmlInit()
|
12 |
+
gpu_h = nvmlDeviceGetHandleByIndex(0)
|
13 |
+
|
14 |
+
from typing import List, Optional, Union
|
15 |
+
from pydantic import BaseModel, Field
|
16 |
+
from pydantic_settings import BaseSettings
|
17 |
+
|
18 |
+
|
19 |
+
class Config(BaseSettings, cli_parse_args=True, cli_use_class_docs_for_groups=True):
|
20 |
+
HOST: str = Field("127.0.0.1", description="Host")
|
21 |
+
PORT: int = Field(8000, description="Port")
|
22 |
+
DEBUG: bool = Field(False, description="Debug mode")
|
23 |
+
STRATEGY: str = Field("cpu", description="Stratergy")
|
24 |
+
MODEL_TITLE: str = Field("RWKV-x070-World-0.1B-v2.8-20241210-ctx4096")
|
25 |
+
DOWNLOAD_REPO_ID: str = Field("BlinkDL/rwkv-7-world")
|
26 |
+
DOWNLOAD_MODEL_DIR: Union[str, None] = Field(None, description="Model Download Dir")
|
27 |
+
MODEL_FILE_PATH: Union[str, None] = Field(None, description="Model Path")
|
28 |
+
GEN_penalty_decay: float = Field(0.996, description="Default penalty decay")
|
29 |
+
CHUNK_LEN: int = Field(
|
30 |
+
256,
|
31 |
+
description="split input into chunks to save VRAM (shorter -> slower, but saves VRAM)",
|
32 |
+
)
|
33 |
+
VOCAB: str = Field("rwkv_vocab_v20230424", description="Vocab Name")
|
34 |
+
|
35 |
+
|
36 |
+
CONFIG = Config()
|
37 |
+
|
38 |
+
|
39 |
+
import numpy as np
|
40 |
+
import torch
|
41 |
+
|
42 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
43 |
+
torch.backends.cudnn.benchmark = True
|
44 |
+
torch.backends.cudnn.allow_tf32 = True
|
45 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
46 |
+
os.environ["RWKV_V7_ON"] = "1" # enable this for rwkv-7 models
|
47 |
+
os.environ["RWKV_JIT_ON"] = "1"
|
48 |
+
os.environ["RWKV_CUDA_ON"] = (
|
49 |
+
"0" # !!! '1' to compile CUDA kernel (10x faster), requires c++ compiler & cuda libraries !!!
|
50 |
+
)
|
51 |
+
|
52 |
+
from rwkv.model import RWKV
|
53 |
+
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
54 |
+
|
55 |
+
from fastapi import FastAPI
|
56 |
+
from fastapi.responses import StreamingResponse
|
57 |
+
from fastapi.middleware.cors import CORSMiddleware
|
58 |
+
|
59 |
+
from api_types import (
|
60 |
+
ChatMessage,
|
61 |
+
ChatCompletion,
|
62 |
+
ChatCompletionChunk,
|
63 |
+
Usage,
|
64 |
+
PromptTokensDetails,
|
65 |
+
ChatCompletionChoice,
|
66 |
+
ChatCompletionMessage,
|
67 |
+
)
|
68 |
+
from utils import cleanMessages, parse_think_response
|
69 |
+
|
70 |
+
|
71 |
+
logger.info(f"STRATEGY - {CONFIG.STRATEGY}")
|
72 |
+
if CONFIG.MODEL_FILE_PATH == None:
|
73 |
+
CONFIG.MODEL_FILE_PATH = hf_hub_download(
|
74 |
+
repo_id=CONFIG.DOWNLOAD_REPO_ID,
|
75 |
+
filename=f"{CONFIG.MODEL_TITLE}.pth",
|
76 |
+
local_dir=CONFIG.DOWNLOAD_MODEL_DIR,
|
77 |
+
)
|
78 |
+
|
79 |
+
logger.info(f"Load Model - {CONFIG.MODEL_FILE_PATH}")
|
80 |
+
model = RWKV(model=CONFIG.MODEL_FILE_PATH.replace(".pth", ""), strategy=CONFIG.STRATEGY)
|
81 |
+
pipeline = PIPELINE(model, CONFIG.VOCAB)
|
82 |
+
|
83 |
+
|
84 |
+
class ChatCompletionRequest(BaseModel):
|
85 |
+
model: str = Field(
|
86 |
+
default="rwkv-latest",
|
87 |
+
description="Add `:thinking` suffix to the model name to enable reasoning. Example: `rwkv-latest:thinking`",
|
88 |
+
)
|
89 |
+
messages: List[ChatMessage]
|
90 |
+
prompt: Union[str, None] = Field(default=None)
|
91 |
+
max_tokens: int = Field(default=512)
|
92 |
+
temperature: float = Field(default=1.0)
|
93 |
+
top_p: float = Field(default=0.3)
|
94 |
+
presencePenalty: float = Field(default=0.5)
|
95 |
+
countPenalty: float = Field(default=0.5)
|
96 |
+
stream: bool = Field(default=False)
|
97 |
+
state_name: str = Field(default=None)
|
98 |
+
include_usage: bool = Field(default=False)
|
99 |
+
|
100 |
+
|
101 |
+
app = FastAPI(title="RWKV OpenAI-Compatible API")
|
102 |
+
|
103 |
+
app.add_middleware(
|
104 |
+
CORSMiddleware,
|
105 |
+
allow_origins=["*"],
|
106 |
+
allow_credentials=True,
|
107 |
+
allow_methods=["*"],
|
108 |
+
allow_headers=["*"],
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
def runPrefill(ctx: str, model_tokens: List[int], model_state):
|
113 |
+
ctx = ctx.replace("\r\n", "\n")
|
114 |
+
|
115 |
+
tokens = pipeline.encode(ctx)
|
116 |
+
tokens = [int(x) for x in tokens]
|
117 |
+
model_tokens += tokens
|
118 |
+
|
119 |
+
while len(tokens) > 0:
|
120 |
+
out, model_state = model.forward(tokens[: CONFIG.CHUNK_LEN], model_state)
|
121 |
+
tokens = tokens[CONFIG.CHUNK_LEN :]
|
122 |
+
|
123 |
+
return out, model_tokens, model_state
|
124 |
+
|
125 |
+
|
126 |
+
def generate(
|
127 |
+
request: ChatCompletionRequest,
|
128 |
+
out,
|
129 |
+
model_tokens,
|
130 |
+
model_state,
|
131 |
+
stops=["\n\n"],
|
132 |
+
max_tokens=2048,
|
133 |
+
):
|
134 |
+
args = PIPELINE_ARGS(
|
135 |
+
temperature=max(0.2, request.temperature),
|
136 |
+
top_p=request.top_p,
|
137 |
+
alpha_frequency=request.countPenalty,
|
138 |
+
alpha_presence=request.presencePenalty,
|
139 |
+
token_ban=[], # ban the generation of some tokens
|
140 |
+
token_stop=[0],
|
141 |
+
) # stop generation whenever you see any token here
|
142 |
+
|
143 |
+
occurrence = {}
|
144 |
+
out_tokens = []
|
145 |
+
out_last = 0
|
146 |
+
|
147 |
+
output_cache = collections.deque(maxlen=5)
|
148 |
+
|
149 |
+
for i in range(max_tokens):
|
150 |
+
for n in occurrence:
|
151 |
+
out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
|
152 |
+
out[0] -= 1e10 # disable END_OF_TEXT
|
153 |
+
|
154 |
+
token = pipeline.sample_logits(
|
155 |
+
out, temperature=args.temperature, top_p=args.top_p
|
156 |
+
)
|
157 |
+
|
158 |
+
out, model_state = model.forward([token], model_state)
|
159 |
+
model_tokens += [token]
|
160 |
+
|
161 |
+
out_tokens += [token]
|
162 |
+
|
163 |
+
for xxx in occurrence:
|
164 |
+
occurrence[xxx] *= CONFIG.GEN_penalty_decay
|
165 |
+
occurrence[token] = 1 + (occurrence[token] if token in occurrence else 0)
|
166 |
+
|
167 |
+
tmp: str = pipeline.decode(out_tokens[out_last:])
|
168 |
+
|
169 |
+
if "\ufffd" in tmp:
|
170 |
+
continue
|
171 |
+
|
172 |
+
output_cache.append(tmp)
|
173 |
+
output_cache_str = "".join(output_cache)
|
174 |
+
|
175 |
+
for stop_words in stops:
|
176 |
+
if stop_words in output_cache_str:
|
177 |
+
|
178 |
+
yield {
|
179 |
+
"content": tmp.replace(stop_words, ""),
|
180 |
+
"tokens": out_tokens[out_last:],
|
181 |
+
"finish_reason": "stop",
|
182 |
+
"state": model_state,
|
183 |
+
}
|
184 |
+
|
185 |
+
del out
|
186 |
+
gc.collect()
|
187 |
+
return
|
188 |
+
|
189 |
+
yield {
|
190 |
+
"content": tmp,
|
191 |
+
"tokens": out_tokens[out_last:],
|
192 |
+
"finish_reason": None,
|
193 |
+
}
|
194 |
+
|
195 |
+
out_last = i + 1
|
196 |
+
|
197 |
+
else:
|
198 |
+
yield {
|
199 |
+
"content": "",
|
200 |
+
"tokens": [],
|
201 |
+
"finish_reason": "length",
|
202 |
+
}
|
203 |
+
|
204 |
+
|
205 |
+
async def chatResponse(
|
206 |
+
request: ChatCompletionRequest, model_state: any, completionId: str
|
207 |
+
) -> ChatCompletion:
|
208 |
+
createTimestamp = time.time()
|
209 |
+
|
210 |
+
enableReasoning = request.model.endswith(":thinking")
|
211 |
+
|
212 |
+
prompt = (
|
213 |
+
f"{cleanMessages(request.messages)}\n\nAssistant:{' <think' if enableReasoning else ''}"
|
214 |
+
if request.prompt == None
|
215 |
+
else request.prompt.strip()
|
216 |
+
)
|
217 |
+
|
218 |
+
out, model_tokens, model_state = runPrefill(prompt, [], model_state)
|
219 |
+
|
220 |
+
prefillTime = time.time()
|
221 |
+
promptTokenCount = len(model_tokens)
|
222 |
+
|
223 |
+
fullResponse = " <think" if enableReasoning else ""
|
224 |
+
completionTokenCount = 0
|
225 |
+
finishReason = None
|
226 |
+
|
227 |
+
for chunk in generate(
|
228 |
+
request,
|
229 |
+
out,
|
230 |
+
model_tokens,
|
231 |
+
model_state,
|
232 |
+
max_tokens=(
|
233 |
+
64000
|
234 |
+
if "max_tokens" not in request.model_fields_set and enableReasoning
|
235 |
+
else request.max_tokens
|
236 |
+
),
|
237 |
+
):
|
238 |
+
fullResponse += chunk["content"]
|
239 |
+
completionTokenCount += 1
|
240 |
+
|
241 |
+
if chunk["finish_reason"]:
|
242 |
+
finishReason = chunk["finish_reason"]
|
243 |
+
await asyncio.sleep(0)
|
244 |
+
|
245 |
+
genenrateTime = time.time()
|
246 |
+
|
247 |
+
responseLog = {
|
248 |
+
"content": fullResponse,
|
249 |
+
"finish": finishReason,
|
250 |
+
"prefill_len": promptTokenCount,
|
251 |
+
"prefill_tps": round(promptTokenCount / (prefillTime - createTimestamp), 2),
|
252 |
+
"gen_len": completionTokenCount,
|
253 |
+
"gen_tps": round(completionTokenCount / (genenrateTime - prefillTime), 2),
|
254 |
+
}
|
255 |
+
logger.info(f"[RES] {completionId} - {responseLog}")
|
256 |
+
|
257 |
+
reasoning_content, content = parse_think_response(fullResponse)
|
258 |
+
|
259 |
+
response = ChatCompletion(
|
260 |
+
id=completionId,
|
261 |
+
created=int(createTimestamp),
|
262 |
+
model=request.model,
|
263 |
+
usage=Usage(
|
264 |
+
prompt_tokens=promptTokenCount,
|
265 |
+
completion_tokens=completionTokenCount,
|
266 |
+
total_tokens=promptTokenCount + completionTokenCount,
|
267 |
+
prompt_tokens_details={"cached_tokens": 0},
|
268 |
+
),
|
269 |
+
choices=[
|
270 |
+
ChatCompletionChoice(
|
271 |
+
index=0,
|
272 |
+
message=ChatCompletionMessage(
|
273 |
+
role="Assistant",
|
274 |
+
content=content,
|
275 |
+
reasoning_content=reasoning_content if reasoning_content else None,
|
276 |
+
),
|
277 |
+
logprobs=None,
|
278 |
+
finish_reason=finishReason,
|
279 |
+
)
|
280 |
+
],
|
281 |
+
)
|
282 |
+
|
283 |
+
return response
|
284 |
+
|
285 |
+
|
286 |
+
async def chatResponseStream(
|
287 |
+
request: ChatCompletionRequest, model_state: any, completionId: str
|
288 |
+
):
|
289 |
+
createTimestamp = int(time.time())
|
290 |
+
|
291 |
+
enableReasoning = request.model.endswith(":thinking")
|
292 |
+
|
293 |
+
prompt = (
|
294 |
+
f"{cleanMessages(request.messages)}\n\nAssistant:{' <think' if enableReasoning else ''}"
|
295 |
+
if request.prompt == None
|
296 |
+
else request.prompt.strip()
|
297 |
+
)
|
298 |
+
|
299 |
+
out, model_tokens, model_state = runPrefill(prompt, [], model_state)
|
300 |
+
|
301 |
+
prefillTime = time.time()
|
302 |
+
promptTokenCount = len(model_tokens)
|
303 |
+
|
304 |
+
completionTokenCount = 0
|
305 |
+
finishReason = None
|
306 |
+
|
307 |
+
response = ChatCompletionChunk(
|
308 |
+
id=completionId,
|
309 |
+
created=createTimestamp,
|
310 |
+
model=request.model,
|
311 |
+
usage=(
|
312 |
+
Usage(
|
313 |
+
prompt_tokens=promptTokenCount,
|
314 |
+
completion_tokens=completionTokenCount,
|
315 |
+
total_tokens=promptTokenCount + completionTokenCount,
|
316 |
+
prompt_tokens_details={"cached_tokens": 0},
|
317 |
+
)
|
318 |
+
if request.include_usage
|
319 |
+
else None
|
320 |
+
),
|
321 |
+
choices=[
|
322 |
+
ChatCompletionChoice(
|
323 |
+
index=0,
|
324 |
+
delta=ChatCompletionMessage(
|
325 |
+
role="Assistant",
|
326 |
+
content="",
|
327 |
+
reasoning_content="" if enableReasoning else None,
|
328 |
+
),
|
329 |
+
logprobs=None,
|
330 |
+
finish_reason=finishReason,
|
331 |
+
)
|
332 |
+
],
|
333 |
+
)
|
334 |
+
yield f"data: {response.model_dump_json()}\n\n"
|
335 |
+
|
336 |
+
buffer = []
|
337 |
+
|
338 |
+
if enableReasoning:
|
339 |
+
buffer.append(" <think")
|
340 |
+
|
341 |
+
streamConfig = {
|
342 |
+
"isChecking": False,
|
343 |
+
"fullTextCursor": 0,
|
344 |
+
"in_think": False,
|
345 |
+
"cacheStr": "",
|
346 |
+
}
|
347 |
+
|
348 |
+
for chunk in generate(
|
349 |
+
request,
|
350 |
+
out,
|
351 |
+
model_tokens,
|
352 |
+
model_state,
|
353 |
+
max_tokens=(
|
354 |
+
64000
|
355 |
+
if "max_tokens" not in request.model_fields_set and enableReasoning
|
356 |
+
else request.max_tokens
|
357 |
+
),
|
358 |
+
):
|
359 |
+
completionTokenCount += 1
|
360 |
+
|
361 |
+
chunkContent: str = chunk["content"]
|
362 |
+
buffer.append(chunkContent)
|
363 |
+
|
364 |
+
fullText = "".join(buffer)
|
365 |
+
|
366 |
+
if chunk["finish_reason"]:
|
367 |
+
finishReason = chunk["finish_reason"]
|
368 |
+
|
369 |
+
response = ChatCompletionChunk(
|
370 |
+
id=completionId,
|
371 |
+
created=createTimestamp,
|
372 |
+
model=request.model,
|
373 |
+
usage=(
|
374 |
+
Usage(
|
375 |
+
prompt_tokens=promptTokenCount,
|
376 |
+
completion_tokens=completionTokenCount,
|
377 |
+
total_tokens=promptTokenCount + completionTokenCount,
|
378 |
+
prompt_tokens_details={"cached_tokens": 0},
|
379 |
+
)
|
380 |
+
if request.include_usage
|
381 |
+
else None
|
382 |
+
),
|
383 |
+
choices=[
|
384 |
+
ChatCompletionChoice(
|
385 |
+
index=0,
|
386 |
+
delta=ChatCompletionMessage(
|
387 |
+
content=None, reasoning_content=None
|
388 |
+
),
|
389 |
+
logprobs=None,
|
390 |
+
finish_reason=finishReason,
|
391 |
+
)
|
392 |
+
],
|
393 |
+
)
|
394 |
+
|
395 |
+
markStart = fullText.find("<", streamConfig["fullTextCursor"])
|
396 |
+
if not streamConfig["isChecking"] and markStart != -1:
|
397 |
+
streamConfig["isChecking"] = True
|
398 |
+
|
399 |
+
if streamConfig["in_think"]:
|
400 |
+
response.choices[0].delta.reasoning_content = fullText[
|
401 |
+
streamConfig["fullTextCursor"] : markStart
|
402 |
+
]
|
403 |
+
else:
|
404 |
+
response.choices[0].delta.content = fullText[
|
405 |
+
streamConfig["fullTextCursor"] : markStart
|
406 |
+
]
|
407 |
+
|
408 |
+
streamConfig["cacheStr"] = ""
|
409 |
+
streamConfig["fullTextCursor"] = markStart
|
410 |
+
|
411 |
+
if streamConfig["isChecking"]:
|
412 |
+
streamConfig["cacheStr"] = fullText[streamConfig["fullTextCursor"] :]
|
413 |
+
else:
|
414 |
+
if streamConfig["in_think"]:
|
415 |
+
response.choices[0].delta.reasoning_content = chunkContent
|
416 |
+
else:
|
417 |
+
response.choices[0].delta.content = chunkContent
|
418 |
+
streamConfig["fullTextCursor"] = len(fullText)
|
419 |
+
|
420 |
+
markEnd = fullText.find(">", streamConfig["fullTextCursor"])
|
421 |
+
if streamConfig["isChecking"] and markEnd != -1:
|
422 |
+
streamConfig["isChecking"] = False
|
423 |
+
|
424 |
+
if (
|
425 |
+
not streamConfig["in_think"]
|
426 |
+
and streamConfig["cacheStr"].find("<think>") != -1
|
427 |
+
):
|
428 |
+
streamConfig["in_think"] = True
|
429 |
+
|
430 |
+
response.choices[0].delta.reasoning_content = (
|
431 |
+
response.choices[0].delta.reasoning_content
|
432 |
+
if response.choices[0].delta.reasoning_content != None
|
433 |
+
else "" + streamConfig["cacheStr"].replace("<think>", "")
|
434 |
+
)
|
435 |
+
|
436 |
+
elif (
|
437 |
+
streamConfig["in_think"]
|
438 |
+
and streamConfig["cacheStr"].find("</think>") != -1
|
439 |
+
):
|
440 |
+
streamConfig["in_think"] = False
|
441 |
+
|
442 |
+
response.choices[0].delta.content = (
|
443 |
+
response.choices[0].delta.content
|
444 |
+
if response.choices[0].delta.content != None
|
445 |
+
else "" + streamConfig["cacheStr"].replace("</think>", "")
|
446 |
+
)
|
447 |
+
else:
|
448 |
+
if streamConfig["in_think"]:
|
449 |
+
response.choices[0].delta.reasoning_content = (
|
450 |
+
response.choices[0].delta.reasoning_content
|
451 |
+
if response.choices[0].delta.reasoning_content != None
|
452 |
+
else "" + streamConfig["cacheStr"]
|
453 |
+
)
|
454 |
+
else:
|
455 |
+
response.choices[0].delta.content = (
|
456 |
+
response.choices[0].delta.content
|
457 |
+
if response.choices[0].delta.content != None
|
458 |
+
else "" + streamConfig["cacheStr"]
|
459 |
+
)
|
460 |
+
streamConfig["fullTextCursor"] = len(fullText)
|
461 |
+
|
462 |
+
if (
|
463 |
+
response.choices[0].delta.content != None
|
464 |
+
or response.choices[0].delta.reasoning_content != None
|
465 |
+
):
|
466 |
+
yield f"data: {response.model_dump_json()}\n\n"
|
467 |
+
|
468 |
+
await asyncio.sleep(0)
|
469 |
+
|
470 |
+
del streamConfig
|
471 |
+
else:
|
472 |
+
for chunk in generate(request, out, model_tokens, model_state):
|
473 |
+
completionTokenCount += 1
|
474 |
+
buffer.append(chunk["content"])
|
475 |
+
|
476 |
+
if chunk["finish_reason"]:
|
477 |
+
finishReason = chunk["finish_reason"]
|
478 |
+
|
479 |
+
response = ChatCompletionChunk(
|
480 |
+
id=completionId,
|
481 |
+
created=createTimestamp,
|
482 |
+
model=request.model,
|
483 |
+
usage=(
|
484 |
+
Usage(
|
485 |
+
prompt_tokens=promptTokenCount,
|
486 |
+
completion_tokens=completionTokenCount,
|
487 |
+
total_tokens=promptTokenCount + completionTokenCount,
|
488 |
+
prompt_tokens_details={"cached_tokens": 0},
|
489 |
+
)
|
490 |
+
if request.include_usage
|
491 |
+
else None
|
492 |
+
),
|
493 |
+
choices=[
|
494 |
+
ChatCompletionChoice(
|
495 |
+
index=0,
|
496 |
+
delta=ChatCompletionMessage(content=chunk["content"]),
|
497 |
+
logprobs=None,
|
498 |
+
finish_reason=finishReason,
|
499 |
+
)
|
500 |
+
],
|
501 |
+
)
|
502 |
+
|
503 |
+
yield f"data: {response.model_dump_json()}\n\n"
|
504 |
+
await asyncio.sleep(0)
|
505 |
+
|
506 |
+
genenrateTime = time.time()
|
507 |
+
|
508 |
+
responseLog = {
|
509 |
+
"content": "".join(buffer),
|
510 |
+
"finish": finishReason,
|
511 |
+
"prefill_len": promptTokenCount,
|
512 |
+
"prefill_tps": round(promptTokenCount / (prefillTime - createTimestamp), 2),
|
513 |
+
"gen_len": completionTokenCount,
|
514 |
+
"gen_tps": round(completionTokenCount / (genenrateTime - prefillTime), 2),
|
515 |
+
}
|
516 |
+
logger.info(f"[RES] {completionId} - {responseLog}")
|
517 |
+
|
518 |
+
del buffer
|
519 |
+
|
520 |
+
yield "data: [DONE]\n\n"
|
521 |
+
|
522 |
+
|
523 |
+
|
524 |
+
|
525 |
+
|
526 |
+
@app.post("/api/v1/chat/completions")
|
527 |
+
async def chat_completions(request: ChatCompletionRequest):
|
528 |
+
completionId = str(next(CompletionIdGenerator))
|
529 |
+
logger.info(f"[REQ] {completionId} - {request.model_dump()}")
|
530 |
+
|
531 |
+
def chatResponseStreamDisconnect():
|
532 |
+
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
533 |
+
logger.info(
|
534 |
+
f"[STATUS] vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}"
|
535 |
+
)
|
536 |
+
|
537 |
+
model_state = None
|
538 |
+
|
539 |
+
if request.stream:
|
540 |
+
r = StreamingResponse(
|
541 |
+
chatResponseStream(request, model_state, completionId),
|
542 |
+
media_type="text/event-stream",
|
543 |
+
background=chatResponseStreamDisconnect,
|
544 |
+
)
|
545 |
+
else:
|
546 |
+
r = await chatResponse(request, model_state, completionId)
|
547 |
+
|
548 |
+
|
549 |
+
return r
|
550 |
+
|
551 |
+
|
552 |
+
if __name__ == "__main__":
|
553 |
+
import uvicorn
|
554 |
+
|
555 |
+
uvicorn.run(app, host=CONFIG.HOST, port=CONFIG.PORT)
|
openai_test.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
uv pip install openai
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
import logging
|
8 |
+
|
9 |
+
# logging.basicConfig(
|
10 |
+
# level=logging.DEBUG,
|
11 |
+
# )
|
12 |
+
|
13 |
+
os.environ["NO_PROXY"] = "127.0.0.1"
|
14 |
+
|
15 |
+
from openai import OpenAI
|
16 |
+
|
17 |
+
client = OpenAI(base_url="http://127.0.0.1:8000/api/v1", api_key="sk-test")
|
18 |
+
|
19 |
+
|
20 |
+
def completionStreamTest():
|
21 |
+
print("[*] Stream completion: ")
|
22 |
+
|
23 |
+
completion = client.chat.completions.create(
|
24 |
+
model="rwkv-latest",
|
25 |
+
messages=[
|
26 |
+
{
|
27 |
+
"role": "User",
|
28 |
+
"content": "请讲个关于一只灰猫和一个小女孩之间的简短故事。",
|
29 |
+
},
|
30 |
+
],
|
31 |
+
stream=True,
|
32 |
+
max_tokens=2048,
|
33 |
+
)
|
34 |
+
|
35 |
+
isReasoning = False
|
36 |
+
|
37 |
+
for chunk in completion:
|
38 |
+
if chunk.choices[0].delta.reasoning_content and not isReasoning:
|
39 |
+
print("<- Reasoning ->")
|
40 |
+
isReasoning = True
|
41 |
+
elif chunk.choices[0].delta.content and isReasoning:
|
42 |
+
isReasoning = False
|
43 |
+
print("<- Stop Reasoning ->")
|
44 |
+
|
45 |
+
if chunk.choices[0].delta.reasoning_content:
|
46 |
+
print(chunk.choices[0].delta.reasoning_content, end="", flush=True)
|
47 |
+
if chunk.choices[0].delta.content:
|
48 |
+
print(chunk.choices[0].delta.content, end="", flush=True)
|
49 |
+
|
50 |
+
print("")
|
51 |
+
|
52 |
+
|
53 |
+
def completionTest():
|
54 |
+
completion = client.chat.completions.create(
|
55 |
+
model="rwkv-latest:thinking",
|
56 |
+
messages=[
|
57 |
+
{
|
58 |
+
"role": "User",
|
59 |
+
"content": "How many planets are there in our solar system?",
|
60 |
+
},
|
61 |
+
],
|
62 |
+
max_tokens=2048,
|
63 |
+
)
|
64 |
+
|
65 |
+
print("[*] Completion: ", completion)
|
66 |
+
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
try:
|
70 |
+
# completionTest()
|
71 |
+
|
72 |
+
testRounds = input("Test rounds (Default: 10) :")
|
73 |
+
|
74 |
+
for i in range(int(testRounds) if testRounds != "" else 10):
|
75 |
+
print("\n", "=" * 10, i + 1, "/", testRounds, "=" * 10)
|
76 |
+
completionStreamTest()
|
77 |
+
except KeyboardInterrupt:
|
78 |
+
pass
|
pyproject.toml
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "rwkv-hf-space"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.10"
|
7 |
+
dependencies = [
|
8 |
+
"fastapi[standard]>=0.115.11",
|
9 |
+
"huggingface-hub>=0.29.1",
|
10 |
+
"loguru>=0.7.3",
|
11 |
+
"numpy>=2.2.3",
|
12 |
+
"pydantic>=2.10.6",
|
13 |
+
"pydantic-settings>=2.8.1",
|
14 |
+
"pynvml>=12.0.0",
|
15 |
+
"rwkv==0.8.28",
|
16 |
+
"snowflake-id>=1.0.2",
|
17 |
+
]
|
18 |
+
|
19 |
+
[project.optional-dependencies]
|
20 |
+
cpu = ["torch>=2.6.0"]
|
21 |
+
cu124 = ["torch>=2.6.0"]
|
22 |
+
cu113 = ["torch"]
|
23 |
+
|
24 |
+
[tool.uv]
|
25 |
+
conflicts = [[{ extra = "cpu" }, { extra = "cu124" }, { extra = "cu113" }]]
|
26 |
+
|
27 |
+
[tool.uv.sources]
|
28 |
+
torch = [
|
29 |
+
{ index = "pytorch-cpu", extra = "cpu" },
|
30 |
+
{ index = "pytorch-cu124", extra = "cu124" },
|
31 |
+
{ index = "pytorch-cu113", extra = "cu113" },
|
32 |
+
]
|
33 |
+
|
34 |
+
[[tool.uv.index]]
|
35 |
+
name = "pytorch-cpu"
|
36 |
+
url = "https://download.pytorch.org/whl/cpu"
|
37 |
+
explicit = true
|
38 |
+
|
39 |
+
[[tool.uv.index]]
|
40 |
+
name = "pytorch-cu124"
|
41 |
+
url = "https://download.pytorch.org/whl/cu124"
|
42 |
+
explicit = true
|
43 |
+
|
44 |
+
[[tool.uv.index]]
|
45 |
+
name = "pytorch-cu113"
|
46 |
+
url = "https://download.pytorch.org/whl/cu113"
|
47 |
+
explicit = true
|
utils.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import List, Optional, Union
|
3 |
+
from pydantic import BaseModel, Field
|
4 |
+
from pydantic_settings import BaseSettings
|
5 |
+
|
6 |
+
from api_types import ChatMessage
|
7 |
+
|
8 |
+
|
9 |
+
def parse_think_response(full_response: str):
|
10 |
+
think_start = full_response.find("<think")
|
11 |
+
if think_start == -1:
|
12 |
+
return None, full_response.strip()
|
13 |
+
|
14 |
+
think_end = full_response.find("</think>")
|
15 |
+
if think_end == -1: # 未闭合的情况
|
16 |
+
reasoning = full_response[think_start:].strip()
|
17 |
+
content = ""
|
18 |
+
else:
|
19 |
+
reasoning = full_response[think_start : think_end + 9].strip() # +9包含完整标签
|
20 |
+
content = full_response[think_end + 9 :].strip()
|
21 |
+
|
22 |
+
# 清理标签保留内容
|
23 |
+
reasoning_content = reasoning.replace("<think", "").replace("</think>", "").strip()
|
24 |
+
return reasoning_content, content
|
25 |
+
|
26 |
+
|
27 |
+
def cleanMessages(messages: List[ChatMessage]):
|
28 |
+
promptStrList = []
|
29 |
+
|
30 |
+
for message in messages:
|
31 |
+
content = message.content.strip()
|
32 |
+
content = re.sub(r"\n+", "\n", content)
|
33 |
+
promptStrList.append(f"{message.role.strip()}: {content}")
|
34 |
+
|
35 |
+
return "\n\n".join(promptStrList)
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|